INFLUENCE OF SUCCINATE ON SOME INDICATORS OF BIOENERGY METABOLISM IN SEMINAL VESICLES AND EPIDIDYMIS IN MALE RATS UNDER CONDITIONS OF CHRONIC HYPOXIA


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relevance. Lactate in the cell performs a number of functions in the regulation of metabolism and is involved in energy metabolism. Under conditions of hypoxia, cells switch to succinate oxidation to maintain energy metabolism. The mechanism of action of succinate as an effective antihypoxic agent has been little studied, but its effectiveness is beyond doubt. Objective. Evaluation of changes in lactate level and LDH activity under conditions of chronic hypoxia and during the use of succinate. Material and methods. We used a model of chronic hypoxia in the modification: the animals were placed in a sealed chamber with a volume of 1.2 liters, connected to a gas analyzer, and were there until the oxygen content in the air reached 10%. The experiment was repeated daily for 14 days. The introduction of succinic acid was carried out in the form of a 4% solution in 0.9% NaCl intraperitoneally for 14 days at a dose of 100 mg / kg. Determined lactic acid and LDH activity in the cytoplasmic and mitochondrial fractions of seminal vesicles and epididymis. Results. Chronic normobaric hypoxia leads to a significant decrease in LDH activity in the epididymis head both in the cytoplasmic and mitochondrial fractions, and to a decrease in LDH activity in the epididymis tail only in the cytoplasm. In the seminal vesicles, no statistically significant changes in LDH activity were found under conditions of chronic hypoxia. The introduction of succinate against the background of hypoxia led to an increase in LDH activity relative to the group with hypoxia of the cytoplasmic fraction in the tail and the mitochondrial fraction of the epididymis head. The accumulation of lactate in the mitochondria of the epididymis head and in the cytoplasm of the seminal vesicles was also noted. Conclusions. Chronic normobaric hypoxia leads to inhibition of LDH activity. The accumulation of lactic acid occurs with an increase in the LDH activity of the mitochondrial fraction in comparison with the LDH activity of the cytoplasm. The receipt of succinate by animals during chronic hypoxia led to an increase in lactate in the mitochondrial fraction and facilitated adaptation of the mitochondrial function.

全文:

受限制的访问

作者简介

Y. Marsyanova

Ryazan State Medical University named after Academician I.P. Pavlov

Email: yuliyamarsyanova@yahoo.com
Assistant, the Department Meeting Biological Chemistry with the Course of CLD FAPE Ryazan

V. Zvyagina

Ryazan State Medical University named after Academician I.P. Pavlov

Email: vizvyagina@yandex.ru
Ph.D. (Biol.), Associate Professor, the Department Meeting Biological Chemistry with the Course of CLD FAPE Ryazan

参考

  1. Gubitosa J.C., Xu P., Ahmed A., Pergament K. COVID-19-Associated Acute Limb Ischemia in a Patient on Therapeutic Anticoagulation. Cureus. 2020 Sep 25;12(9):e10655. doi: 10.7759/cureus.10655.
  2. Shen G., Hu S., Zhao Z., Zhang L., Ma Q. Antenatal Hypoxia Accelerates the Onset of Alzheimer's Disease Pathology in 5xFAD Mouse Model. Front Aging Neurosci. 2020 Aug 21;12:251. doi: 10.3389/fnagi.2020.00251. PMID: 32973487; PMCID: PMC7472639.
  3. Абросимов В.Н., Перегудова Н.Н., Косяков А.В. Оценка функциональных показателей дыхательной системы у пациентов с хронической обструктивной болезнью легких при проведении 6-минутного шагового теста. Наука молодых (Eruditio Juvenium). 2019; 7(3): 323-331
  4. Бельских Э.С., Урясьев О.М., Звягина В.И., Фалетрова С.В. Сукцинат и сукцинат дегидрогеназа моноядерных лейкоцитов крови как маркеры адаптации митохондрий к гипоксии у больных при обострении хронической обструктивной болезни легких. Российский медико-биологический вестник имени академика И.П. Павлова. 2020; 28(1): 13-20. doi: 10.23888/PAVLOVJ202028113-20.
  5. Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020.ug;35:101454. doi: 10.1016/j.redox.2020.101454.
  6. Ogasawara E., Nakada K., Ishihara N. Distal control of mitochondrial biogenesis and respiratory activity by extracellular lactate caused by large-scale deletion of mitochondrial DNA. Pharmacol Res. 2020. Sep 15; 160:105204. doi: 10.1016/j.phrs.2020.105204.
  7. Стасюк О.Н., Альфонсова Е.В., Авсеенко Н.Д. Экспериментальное исследование влияния дефицита кислорода на кислотно-основное состояние. Современные проблемы науки и образования. 2016; 6: 130-137.
  8. Патент РФ. Способ моделирования нормобарической хронической гипоксии. Заявка № 2020123722/14(040996): заявл. 17.07.2020. Ю.А. Марсянова, В.И. Звягина.
  9. Ball M.K., Waypa G.B., Mungai P.T., et al. Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1a. Am. J. Respir. Crit. Care Med. 2014;189(3):314-324. doi: 10.1164/rccm.201302-03020C.
  10. Симонова Н.В., Доровских В.А., Кропотов А.В., Котельникова М.А., Штарберг М.А., Майсак А.Г., Чернышева А.А., Кабар М.А. Сравнительная эффективность янтарной кислоты и Реамберина при окислительном стрессе в эксперименте. Бюллетень физиологии и патологии дыхания. 2018. №70.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russkiy Vrach Publishing House, 2021
##common.cookie##