One-carbon metabolism markers in cardiac patients at different times after a new coronavirus infection

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. The development of postCOVID syndrome is accompanied by changes in one-carbon metabolism and the development of cardiovascular diseases in patients who have undergone a new coronavirus infection. To understand the pathogenesis of postCOVID syndrome in patients with cardiological pathology, it is important to study possible biochemical changes, as well as to search for predictors to assess the risk of cardiovascular pathology.

Objective – to evaluate changes in homocysteine and folic acid levels at different times after a new coronavirus infection in patients with cardiovascular diseases.

Material and Methods. The case-control study included 82 patients of the cardiology department, of which 49 patients at different times after COVID-19 (6 months, 12 months and 24 months) and 33 patients without a history of COVID-19 (control). Serum concentrations of homocysteine and folic acid were determined in all patients.

Results. In cardiac patients with COVID-19, regardless of the prescription period, the concentration of homocysteine was 11.1 [9.3; 14.2] mmol/l, in the control – 13.9 [12.0; 16.9] mmol/l (p=0.013). At the same time, the folic acid content in the group of patients who underwent Covid-19 was statistically significantly lower than in the group of patients who did not have COVID-19 (6.52 [4.26; 8.86] and 11.0 [8.08; 12.3] ng/ml, respectively). When analyzing homocysteine levels depending on the prescription period after COVID-19, after 6 months, the homocysteine level was 9.4 [8.3; 13.7] mmol/l, after 12 months – 10.3 [9.2; 10.6] mmol/l, after 24 months – 13.2 [11.2; 17.2] mmol/l, p=0.004. The concentration of folic acid in patients 6 months after COVID-19 was 6.13 [3.36; 8.68] ng/ml, after 12 months – 10.1 [5.63; 16.1] ng/ml, after 24 months – 5.82 [5.44; 8.06] ng/ml, p=0.08. At the time 24 months after the COVID-19, the homocysteine/folic acid ratio was higher than at other times, indicating an imbalance in one-carbon metabolism.

Conclusion. Hyperhomocysteinemia is observed in patients with cardiovascular pathology, regardless of the coronavirus infection. After COVID-19 in patients with a cardiological profile, disorders in single-carbon metabolism, manifested by folic acid deficiency and hyperhomocystenemia, underlie the development of long COVID and are predictors of cardiovascular complications.

全文:

受限制的访问

作者简介

D. Evteeva

Northwestern State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: doc.evteeva@yandex.ru
ORCID iD: 0000-0001-5756-2088
SPIN 代码: 3468-6619

Post-graduate Student of the Clinical Laboratory Diagnostics, Biological and General Chemistry Department

俄罗斯联邦, 41 Kirochnaya Street, Saint Petersburg, 191015

L. Gaikovaya

Northwestern State Medical University named after I.I. Mechnikov

Email: larisa.gaikovaya@szgmu.ru
ORCID iD: 0000-0003-1000-1114
SPIN 代码: 9424-1076

Dr.Sc. (Med.), Associate Professor, Head of the Clinical Laboratory Diagnostics, Biological and General Chemistry Department

俄罗斯联邦, 41 Kirochnaya Street, Saint Petersburg, 191015

参考

  1. Pérez-González A., Araújo-Ameijeiras A., Fernández-Villar A., et al. Long COVID in hospitalized and non-hospitalized patients in a large cohort in Northwest Spain, a prospective cohort study. Sci Rep. 2022; 12(1): 3369. doi: 10.1038/s41598-022-07414-x.
  2. Lopez-Leon S., Wegman-Ostrosky T., Perelman C., et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021; 11(1): 16144. doi: 10.1038/s41598-021-95565-8.
  3. Raman B., Cassar M.P., Tunnicliffe E.M., et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021; 31: 100683. doi: 10.1016/j.eclinm.2020.100683.
  4. Nalbandian A., Sehgal K., Gupta A., et al. Post-acute COVID-19 syndrome. Nat Med. 2021; 27(4): 601615.doi: 10.1038/s41591-021-01283-z.
  5. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022; 28(3): 583590. doi: 10.1038/s41591-022-01689-3.
  6. Maamar M., Artime A., Pariente E., et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin. 2022; 38(6): 901909. doi: 10.1080/03007995.2022.2042991.
  7. Lionte C., Sorodoc V., Haliga R.E., et al. Inflammatory and Cardiac Biomarkers in Relation with Post-Acute COVID-19 and Mortality: What We Know after Successive Pandemic Waves. Diagnostics. 2022; 12(6): 1373. doi: 10.3390/diagnostics12061373.
  8. Carpenè G., Negrini D., Henry B.M., Montagnana M., Lippi G. Homocysteine in coronavirus disease (COVID-19): a systematic literature review. Diagnosis. 2022; 9(3): 306310. doi: 10.1515/dx-2022-0042.
  9. Oner P., Yilmaz S., Doğan S. High Homocysteine Levels Are Associated with Cognitive Impairment in Patients Who Recovered from COVID-19 in the Long Term. J Pers Med. 2023; 13(3): 503. doi: 10.3390/jpm13030503.
  10. Wald D.S., Law M., Morris J.K. Homocysteine and car-diovascular disease: evidence on causality from a meta-analysis. BMJ Br Med J. 2002; 325(7374): 1202. doi: 10.1136/BMJ.325.7374.1202.
  11. Koklesova L., Mazurakova A., Samec M., et al. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J. 2021; 12(4): 477505. doi: 10.1007/s13167-021-00263-0.
  12. Вохмянина Н.В., Гайковая Л.Б., Евтеева Д.А., Власова Ю.А. Гомоцистеин как предиктор тяжести течения коронавирусной инфекции: биохимическое обоснование. Лабораторная служба. 2022; 11(1): 43 50. [Vokhmianina N.V., Gaikovaya L.B., Evteeva D.A., Vlasova Y.A. Homocysteine as a predictor of the severity of coronavirus infection: biochemical justification. Lab Sluz. 2022; 11(1): 43–50. (In Russ.)]. doi: 10.17116/LABS20221101143.
  13. Ponti G., Roli L., Oliva G., et al. Homocysteine (Hcy) asses-sment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients. Clin Chem Lab Med. 2021; 59(9): e354e357. doi: 10.1515/cclm-2021-0168.
  14. Евтеева Д.А., Гайковая Л.Б. Прогностическая значимость изменений уровня маркеров воспаления у пациентов с новой коронавирусной инфекцией. Лабораторная диагностика Восточная Европа. 2023; (2): 283290. [Evteeva D.A., Gaikovaya L.B. Prognostic Significance of Inflammatory Markers Level Changes in Patients with a New Coronavirus Infection. Лабораторная диагностика Восточная Европа. 2023; (2): 283290 (In Russ.)]. DOI:1 0.34883/PI.2023.12.2.013.
  15. Kim J., Kim H., Roh H., Kwon Y. Causes of hyperho-mocysteinemia and its pathological significance. Arch Pharm Res. 2018; 41(4): 372383. doi: 10.1007/s12272-018-1016-4.
  16. Zhang Y., Guo R., Kim S.H., et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun. 2021; 12(1): 1676. doi: 10.1038/s41467-021-21903-z.
  17. Жлоба А.А., Субботина Т.Ф. Оценка фолатного статуса с использованием общего гомоцистеина у пациентов с гипертонической болезнью. Российский медицинский журнал. 2019; 25(3): 158165. [Zhloba A.A., Subbotina T.F. The evaluation of folate status using total homocysteine in hypertensive patients. Med J Russ Fed. 2019; 25(3): 158165. (In Russ.)]. doi: 10.18821/0869-2106-2019-25-3-158-165.

补充文件

附件文件
动作
1. JATS XML
2. Figure. Ratio of homocysteine and folic acid levels

下载 (44KB)

版权所有 © Russkiy Vrach Publishing House, 2025