The role of adipokines in the development of adipose tissue dysfunction and other metabolic disorders

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The role of specific adipokines in the formation of adipose tissue dysfunction is considered. Obesity is a multifactorial disease that is characterized by excessive adipose tissue accumulation in the body and is a risk factor for the development of several other diseases, including type 2 diabetes mellitus, cardiovascular diseases, and non-alcoholic fatty liver disease. Obesity is one of the main causes of chronic diseases and disability in modern society. Adipose tissue takes an active part in cellular reactions and metabolic homeostasis and does not represent inert tissue only for energy storage. In obesity, excessive accumulation of visceral fat causes adipose tissue dysfunction, which greatly contributes to the occurrence of concomitant diseases. Adipose tissue is capable of synthesizing and releasing a large number of hormones, cytokines, extracellular matrix proteins, growth factors, and vasoactive factors, which are collectively called adipokines, affecting various physiological and pathophysiological processes in the body. Perivascular adipose tissue produces cytokines that affect angiogenesis and peripheral vascular resistance. Adiponectin suppresses the production of glucose in the liver and enhances fatty acid oxidation in the skeletal muscles, which together contribute to a favorable metabolic effect in energy homeostasis, protect cells from apoptosis, and reduce inflammation in various cell types through receptor-dependent mechanisms. Leptin modulates vasoconstriction depending on sympathetic activity while resistin is involved in insulin resistance due to inflammation, wherein its high level determines metabolically unhealthy obesity. Additionally, visfatin plays an important role in the pathogenesis of vascular inflammation in obesity and diabetes mellitus while osteopontin regulates the production of inflammatory mediators by immune cells and omentin plays an important anti-inflammatory and insulin-sensitizing role. The production of most inflammatory mediators in adipose tissue dysfunction increases and contributes to the progression of obesity and related metabolic and vascular disorders. Considering adipokines as biological markers of pathological processes is necessary since their study will create prerequisites for preventive measures and will contribute to the positive treatment process.

Full Text

Restricted Access

About the authors

Alexey A. Mikhailov

Military medical academy of S.M. Kirov

Author for correspondence.
Email: auri8@mail.ru
ORCID iD: 0000-0001-5656-2764
SPIN-code: 3957-6107

adjunct

Russian Federation, Saint Petersburg

Yuri S. Khalimov

Military medical academy of S.M. Kirov

Email: yushkha@gmail.com
ORCID iD: 0000-0002-7755-7275
SPIN-code: 7315-6746

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Sergey V. Gaiduk

Military medical academy of S.M. Kirov

Email: gaiduksergey@mail.ru
SPIN-code: 8602-4922

doctor of medical sciences, associate professor

Russian Federation, Saint Petersburg

Yuri E. Rubtsov

Military medical academy of S.M. Kirov

Email: rubtsovyuri@yandex.ru
ORCID iD: 0000-0002-1865-4251
SPIN-code: 1096-5120

candidate of medical sciences

Russian Federation, Saint Petersburg

Elena B. Kireeva

Military medical academy of S.M. Kirov

Email: ekirreva@me.com
SPIN-code: 8954-1927

candidate of medical sciences

Russian Federation, Saint Petersburg

References

  1. Ametov AS, Rubtsov YuE, Saluhov VV, et al. Elimination of adipose tissue dysfunction as a major factor in reducing cardiometabolic risks in obesity. Therapy. 2019;(6):66–74. (In Russ.). doi: 10.18565/therapy.2019.6.66-74
  2. Xia N, Li H. The Role of Perivascular Adipose Tissue in Obesity-Induced Vascular Dysfunction. Br J Pharm. 2017;174(20):3425–3442. doi: 10.1111/bph.13650
  3. Kryukov EV, Potekhin NP, Fursov AN, et al. Hypertensive crisis: modern view of the problem and optimization of diagnostic and therapeutic modalities. Clinical Medicine (Russian Journal). 2016;94(1): 52–56. (In Russ.). doi: 10.18821/0023-2149-2016-94-1-52-56
  4. Kuz'mich VG, Khalimov YuSh, Salukhov VV, et al. Aktual'nye problemy profilaktiki i lecheniya ozhireniya u voennosluzhashchikh. Aktual'nye problemy i perspektivy razvitiya fizicheskoi podgotovki. Materialy mezhvuzovskoi nauchno-prakticheskoi konferentsii. 2018;(1):39–50. (In Russ.).
  5. Costa R, Toster R, Neves K, et al. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. doi: 10.3389/fphys.2018.00253
  6. Arutyunov GP, Boytsov SA, Voevoda MI, et al. Correction of hypertriglyceridemia in order to reduce the residual risk in atherosclerosis-related diseases. Expert Council Opinion. Russian Journal of Cardiology. 2019;(9):44–51. (In Russ.). doi: 10.15829/1560-4071-2019-9-44-51
  7. Maeda N, Funahashi T, Matsuzawa Y, et al. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2019;292:1–9. doi: 10.1016/j.atherosclerosis.2019.10.021
  8. Liang W, Ye DD. The Potential of Adipokines as Biomarkers and Therapeutic Agents for Vascular Complications in Type 2 Diabetes Mellitus. Cytokine Growth Factor Rev. 2019;48:32–39. doi: 10.1016/j.cytogfr.2019.06.002
  9. Stefan N, Haring HU, Cusi K. Non-Alcoholic Fatty Liver Disease: Causes, Diagnosis, Cardiometabolic Consequences, and Treatment Strategies. Lancet Diabetes Endocrinol. 2019;7(4):313–324. doi: 10.1016/S2213-8587(18)30154-2
  10. Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. PNAS USA. 2020;117(6):2751–2760. doi: 10.1073/pnas.1920004117
  11. Vavilova TP, Pleten' AP, Mikheev RK. Biological role of adipokines and their association with morbid conditions. Problems of nutrition. 2017;86(2):5–13. (In Russ.).
  12. Hassnain Waqas SF, Noble A, Hoang AC, et al. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol. 2017;102(3):845–855. doi: 10.1189/jlb.1A0317-082RR
  13. Park HK, Kwak MK, Kim HJ, Ahima RS. Linking Resistin, Inflammation, and Cardiometabolic Diseases. Korean J Intern Med. 2017;32(2):239–247. doi: 10.3904/kjim.2016.229
  14. Fruhbeck G, Kiortsis DN, Catalan V. Precision medicine: Diagnosis and Management of Obesity. Lancet Diabetes Endocrinol. 2017;6(3):164–166. doi: 10.1016/S2213-8587(17)30312-1
  15. Zhang T-P, Li H-M, Leng R-X, et al. Plasma levels of adipokines in systemic lupus erythematosus patients. Cytokine. 2016;86:15–20. doi: 10.1016/j.cyto.2016.07.008
  16. Chang L, Xiong W, Zhao X, et al. Bmal1 in Perivascular Adipose Tissue Regulates Resting-Phase Blood Pressure Through Transcriptional Regulation of Angiotensinogen. Circulation. 2018;138(1):67–79. doi: 10.1161/CIRCULATIONAHA.117.029972
  17. Narumi T, Watanabe T, Kadowaki S, et al. Impact of Serum Omentin-1 Levels on Cardiac Prognosis in Patients with Heart Failure. Cardiovasc Diabetol. 2014;13:84. doi: 10.1186/1475-2840-13-84
  18. Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a Link Between Type 2 Diabetes and Vascular NADPH Oxidase Activity in the Human Arterial Wall: The Regulatory Role of Perivascular Adipose Tissue. Diabetes. 2015;64(6):2207–2219. doi: 10.2337/db14-1011
  19. Beloqui O, Moreno MU, San Jose G, et al. Increased Phagocytic NADPH Oxidase Activity Associates with Coronary Artery Calcification in Asymptomatic Men. Free Radic Res. 2017;51(4):389–396. doi: 10.1080/10715762.2017.1321745
  20. Fruhbeck G, Catalan V, Rodriguez A, Gomez-Ambrosi J. Adiponectin-Leptin Ratio: A Promising Index to Estimate Adipose Tissue Dysfunction. Relation with Obesity-Associated Cardiometabolic Risk. Adipocyte. 2018;7(1):57–62. doi: 10.1080/21623945.2017.1402151
  21. Wang X, Qiao Y, Yang L, et al. Leptin levels in patients with systemic lupus erythematosus inversely correlate with regulatory T cell frequency. Lupus. 2017;26(13):1401–1406. doi: 10.1177/0961203317703497
  22. Shim K, Begum R, Yang C, Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J Diabetes. 2020;11(1):1–12. doi: 10.4239/wjd.v11.i1.1
  23. Sawaki D, Czibik G, Pini M, et al. Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production. Circulation. 2018;138(8):809–822. doi: 10.1161/CIRCULATIONAHA.117.031358
  24. Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953;140(901): 578–596. doi: 10.1098/rspb.1953.0009
  25. Fruhbeck G, Catalan V, Rodriguez A, et al. Normalization of Adiponectin Concentrations by Leptin Replacement in ob/ob Mice is Accompanied by Reductions in Systemic Oxidative Stress and Inflammation. Sci Rep. 2017;7:2752. doi: 10.1038/s41598-017-02848-0
  26. Balsan GA, Viera JL, Oliveira AM, et al. Relationship between adiponectin, obesity and insulin resistance. Revista da Associação Médica Brasileira. 2015;61:72–80. doi: 10.1172/JCI29126
  27. Petrenko YV, Gerasimova KS, Novikova VP. Biological and pathophysiological role of adiponectin. Pediatr (Sankt-Peterburg). 2019;(2):83–87. (In Russ.). doi: 10.17816/PED10283-87
  28. Khorlampenko AA, Karetnikova VN, Kochergina AM, et al. Visceral adiposity index in patients with coronary artery disease, obesity and type 2 diabetes. Cardiovascular Therapy and Prevention. 2020;19(3):172–180. (In Russ.). doi: 10.15829/1728-8800-2020-2311
  29. Uchasova EG, Gruzdeva OV, Belik EV, Dyleva YuA. Adiponectin and insulin: molecular mechanisms of metabolic disorders. Bulletin of Siberian Medicine. 2020;19(3):188–197. (In Russ.). doi: 10.20538/1682-0363-2020-3-188-197
  30. Gómez-Ambrosi J, Catalán V, Diez-Caballero A, et al. Gene Expression Profile of Omental Adipose Tissue in Human Obesity. FASEB J. 2004;18(1):215–217. doi: 10.1096/fj.03-0591fje
  31. Flier JS, Maratos-Flier E. Leptin's Physiologic Role: Does the Emperor of Energy Balance Have No Clothes? Cell Metab. 2017;26(1):24–26. doi: 10.1016/j.cmet.2017.05.013
  32. Kwon O, Kim KW, Kim M-S. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci. 2016;73:1457–1477. doi: 10.1007/s00018-016-2133-1
  33. Adams TD, Davidson LE, Litwin SE, et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass. NEJM. 2017;377:1143–1155. doi: 10.1056/NEJMoa1700459
  34. Freitas L, Braga V, Franca Silva M, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. 2015;6:304. doi: 10.3389/fphys.2015.00061
  35. Rodriguez A, Becerril S, Ezquerro S, et al. Cross-Talk between Adipokines and Myokines in Fat Browning. Acta Physiol. 2017;219(2):362–381. doi: 10.1111/apha.12686
  36. Doulamis IP, Konstantopoulos P, Tzani A, et al. Visceral white adipose tissue and serum proteomic alternations in metabolically healthy obese patients undergoing bariatric surgery. Cytokine. 2019;115:76–83. doi: 10.1016/j.cyto.2018.11.017
  37. Arica PC, Aydin S, Zengin U, et al. The Effects on Obesity Related Peptides of Laparoscopic Gastric Band Applications in Morbidly Obese Patients. J Investig Surg. 2018;31(2):89–95. doi: 10.1080/08941939.2017.1280564
  38. Moreno MU, San Jose G, Pejenaute A, et al. Association of Phagocytic NADPH Oxidase Activity with Hypertensive Heart Disease: A Role for Cardiotrophin-1? Hypertension. 2014;63(3):468–474. doi: 10.1161/HYPERTENSIONAHA.113.01470
  39. Lourenco EV, Liu A, Matarese G, La Cava A. Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. PNAS USA. 2016;113(38): 10637–10642. doi: 10.1073/pnas.1607101113
  40. Carbone F, Montecucco F. Novel Cardiovascular Risk Biomarkers in Carotid Atherogenesis. Biomark Med. 2018;12(10):1065–1067. doi: 10.2217/bmm-2018-0198
  41. Iсer MA, Gezmen-Karadag M. The Multiple Functions and Mechanisms of Osteopontin. Clin Biochem. 2018;59:17–24. doi: 10.1016/j.clinbiochem.2018.07.003
  42. Unamuno X, Gomez-Ambrosi J, Rodriguez A, et al. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. Eur J Clin Investig. 2018;48(9):e12997. doi: 10.1111/eci.12997
  43. Lancha A, Moncada R, Valenti V, et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg. 2014;24:1702–1708. doi: 10.1007/s11695-014-1240-z
  44. Lopez B, Gonzalez A, Lindner D, et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc Res. 2013;99(1):111–120. doi: 10.1093/cvr/cvt100
  45. Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2018;16:83–99. doi: 10.1038/s41569-018-0097-6
  46. Lapointe M, Poirier P, Martin J, et al. Omentin changes following bariatric surgery and predictive links with biomarkers for risk of cardiovascular disease. Cardiovasc Diabetol. 2014;13:124. doi: 10.1186/s12933-014-0124-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. The effects of adiponectin on atherogenesis. The red arrows represent pro-inflammatory pathways that are stimulated during obesity and contribute to atherogenesis. The blue arrows indicate anti-inflammatory pathways that are suppressed in obesity because the level of adiponectin is low. Green arrows indicate the production or stimulation of adipokine secretion

Download (534KB)

Copyright (c) 2022 Mikhailov A.A., Khalimov Y.S., Gaiduk S.V., Rubtsov Y.E., Kireeva E.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies