Development of a test system and a method for detecting ribonucleic acid of severe acute respiratory syndrome coronavirus 2 using real-time polymerase chain reaction

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Given the rapid spread of coronavirus disease 2019 (COVID-19) globally, test systems are needed for its diagnosis, timely treatment, and introduction of quarantine measures. In the shortest possible time, a diagnostic system based on real-time reverse-transcription polymerase chain reaction to detect the ribonucleic acid of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal and oropharyngeal smears was developed and registered. The method determines the nucleocapsid and small-membrane protein genes and the human PGK1 gene, acting as internal control reactions. The nucleotide sequences of SARS-CoV-2 were analyzed, and primers were selected. The conditions for carrying out real-time reverse-transcription polymerase chain reaction and the composition of a set of reagents were set. The diagnostic sensitivity and specificity of the kit were tested on biological samples, with the addition of inactivated SARS-CoV-2. The high analytical characteristics of the developed set of reagents were demonstrated, with a sensitivity of at least 103 GE/mL and a specificity of 100%, and no false-positive or false-negative results were recorded. The high specificity of the test system was shown on a representative sample of genetic materials of respiratory viral pathogens. Clinical and laboratory tests of the diagnostic “SARS-CoV-2 test” were conducted in the N.F. Gamalei National Research Center for Epidemiology and Microbiology. A set of reagents for the detection of ribonucleic acid of SARS-CoV-2 through on real-time reverse-transcription polymerase chain reaction for in vitro diagnostics “SARS-CoV-2 test” was registered in the Russian Federation as a medical device (Registration certificate no. RZN 2020/10632, dated 06/03/2020).

Full Text

Restricted Access

About the authors

Olga A. Miteva

State Research and Testing Institute of Military Medicine

Author for correspondence.
Email: letto2004@inbox.ru
ORCID iD: 0000-0002-3874-6954
SPIN-code: 2070-7250
Scopus Author ID: 55195685300

applicant for an academic degree

Russian Federation, Saint Petersburg

Anna V. Smirnova

State Research and Testing Institute of Military Medicine

Email: gniii_7@mil.ru
SPIN-code: 4897-0219

applicant for an academic degree

Russian Federation, Saint Petersburg

Irina A. Myasnikova

State Research and Testing Institute of Military Medicine

Email: gniii_7@mil.ru
SPIN-code: 8883-1534

candidate of medical sciences

Russian Federation, Saint Petersburg

Ksenia A. Bykova

State Research and Testing Institute of Military Medicine

Email: gniii_7@mil.ru
SPIN-code: 3310-3572

junior research assistant

Russian Federation, Saint Petersburg

Boris A. Kanevsky

State Research and Testing Institute of Military Medicine

Email: gniii_7@mil.ru
SPIN-code: 2549-9294

deputy chief

Russian Federation, Saint Petersburg

Vadim A. Myasnikov

State Research and Testing Institute of Military Medicine

Email: gniii_7@mil.ru
SPIN-code: 5084-2723

candidate of medical sciences

Russian Federation, Saint Petersburg

References

  1. Medunitsyn NV, Katlinsky AV, Vorslov LO. Editors. Vaccinology. Moscow: Practical Medicine; 2022. 480 p. (In Russ.)
  2. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi: 10.1056/NEJMoa2001316
  3. Wang H, Wang W, Tan W. Summary of the detection kits for SARS-CoV-2 approved by the National Medical Products Administration of China and their application for diagnosis of COVID-19. Virol Sin. 2020;35(6):699–712. doi: 10.1007/s12250-020-00331-1
  4. Park S, Zhang Y, Lin S, et al. Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv. 2011;29(6):830–839. doi: 10.1016/j.biotechadv.2011.06.017
  5. Esbin MN, Whitney ON, Chong S, et al. Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. RNA. 2020;26(7):771–783. doi: 10.1261/rna.076232.120
  6. Tan W, Zhao X, Ma X. et al. A novel coronavirus genome Identified in a cluster of pneumonia cases. Wuhan, China 2019−2020. China CDC Weekly. 2020;2(4):61–62. doi: 10.46234/ccdcw2020.017
  7. Dong L, Zhou J, Niu C, et al. Highly accurate and sensitive diagnostic detection of SARS-CoV-2 by digital PCR. Talanta. 2021;224:121726. doi: 10.1016/j.talanta.2020.121726

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies