The glymphatic system and biomarkers of the cerebrospinal fluid in idiopathic normotensive hydrocephalus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Idiopathic normotensive hydrocephalus is one of the most common brain diseases in older people. The most urgent issue in the study of normotensive hydrocephalus is its differential diagnosis with other neurodegenerative and vascular pathologies of the brain. Currently, more studies have examined the concentration of biomarkers in the cerebrospinal fluid of patients with idiopathic normotensive hydrocephalus and other brain diseases to understand the pathophysiological processes in the pathogenesis of neurodegenerative diseases. The overwhelming majority of these studies have focused on the biomarkers of the cerebrospinal fluid in only one anatomical area: the ventricles of the brain or the lumbar subarachnoid space. However, only a few studies have conducted a comparative assessment of the composition and concentrations of biomarkers in ventricular and lumbar cerebrospinal fluid in the same patients. We believe that the difference in the content of biomarkers in different areas may be crucial in the choice of treatment methods for patients with idiopathic normotensive hydrocephalus. The lumbar cerebrospinal fluid is more “polluted”–the content of nearly all biomarkers in the lumbar subarachnoid space is higher than that of the cerebrospinal fluid in the ventricles of the brain. Of the two most commonly used basic surgical techniques for the treatment of idiopathic normotensive hydrocephalus, ventriculoperitoneal and lumboperitoneal bypass surgery, preference is given to lumboperitoneal bypass surgery, which avoids complications associated with damage to the parenchyma of the brain and, most importantly, drains the “dirtier” cerebrospinal fluid with a higher concentration of proteins from the lumbar space. Instead of lumboperitoneal bypass surgery, we proposed a new combination of two surgical procedures–the combination of endoscopic triventriculocysternostomy and ventriculoperitoneal bypass surgery. With such a combination, we believe that drainage of the cerebrospinal fluid from the ventricles and the subarachnoid space of the cisterns of the base of the brain will be more effective than the traditional ventriculoperitoneal shunting because the concentration of proteins involved in the progression of degenerative diseases of the brain will decrease more actively.

Full Text

Restricted Access

About the authors

Elizaveta K. Sadkovskaya

Military Medical Academy of S.M. Kirov

Author for correspondence.
Email: elgbettasadk@gmail.com
ORCID iD: 0000-0001-5930-3805

student

Russian Federation, Saint Petersburg

Gaspar V. Gavrilov

Military Medical Academy of S.M. Kirov

Email: gaspar_gavrilov@mail.ru
ORCID iD: 0000-0002-8594-1533
SPIN-code: 9931-3861

doctor of medical sciences

Russian Federation, Saint Petersburg

Batal G. Adleyba

Military Medical Academy of S.M. Kirov

Email: adleyba.batal@mail.ru
ORCID iD: 0000-0002-9761-7095
SPIN-code: 7200-3576

adjunct

Russian Federation, Saint Petersburg

Mark N. Radkov

Military Medical Academy of S.M. Kirov

Email: mnr1001@mail.ru
ORCID iD: 0000-0002-6626-7707
SPIN-code: 1683-8310

neurosurgeon

Russian Federation, Saint Petersburg

Artem V. Stanishevskiy

Military Medical Academy of S.M. Kirov

Email: elgbettasadk@gmail.com
ORCID iD: 0000-0002-2615-269X
SPIN-code: 3423-8297

adjunct

Russian Federation, Saint Petersburg

Dmitriy V. Svistov

Military Medical Academy of S.M. Kirov

Email: elgbettasadk@gmail.com
ORCID iD: 0000-0002-3922-9887
SPIN-code: 3184-5590

candidate of medical sciences, associate professor

Russian Federation, Saint Petersburg

References

  1. Adams RD, Fisher CM, Hakim S, et al. Symptomatic occultydrocephalus with “normal” cerebrospinal fluid pressure: a treatable syndrome. N Engl J Med. 1965;273(3):117–126. doi: 10.1056/NEJM196507152730301
  2. Andersson J. Idiopathic normal pressure hydrocephalus: epidemiology and diagnostics. PLoS One. 2019;14(5):e0217705. doi: 10.1371/journal.pone.0217705
  3. Xie D, Chen H, Guo X, et al. Comparative study of lumboperitoneal shunt and ventriculoperitoneal shunt in the treatment of idiopathic normal pressure hydrocephalus. Am J Transl Res. 2021;13(10):11917.
  4. Andrén K, Wikkelsø C, Hellström P, et al. Early shunt surgery improves survival in idiopathic normal pressure hydrocephalus. Eur J Neurol. 2021;28(4):1153–1159. doi: 10.1111/ene.14671
  5. Isaacs AM, Hamilton M. Natural history, treatment outcomes and quality of life in idiopathic Normal Pressure Hydrocephalus (iNPH). Neurol India. 2021;69(8):561. doi: 10.4103/0028-3886.332281
  6. Thavarajasingam SG, El-Khatib M, Rea M, et al. Clinical predictors of shunt response in the diagnosis and treatment of idiopathic normal pressure hydrocephalus: a systematic review and meta-analysis. Acta Neurochir. 2021;163(10):2641–2672. doi: 10.1007/s00701-021-04922-z
  7. Naito H, Sugimoto T, Kimoto K, et al. Clinical comorbidities correlated with a response to the cerebrospinal fluid tap test in idiopathic normal-pressure hydrocephalus. J Neurol Sci. 2021;430:120024. doi: 10.1016/j.jns.2021.120024
  8. da Rocha SFB, Kowacs PA, de Souza RKM, et al. Serial Tap Test of patients with idiopathic normal pressure hydrocephalus: impact on cognitive function and its meaning. Fluids Barriers CNS. 2021;18(1):22. DOI: 10/1186/s12987-021-00254-3
  9. Nabbanja E, Czosnyka M, Keong NC, et al. Is there a link between ICP-derived infusion test parameters and outcome after shunting in normal pressure hydrocephalus. Intracranial Pressure & Neuromonitoring XVI. Wien: Springer. 2018;126:229–232. doi: 10.1007/978-3-319-65798-1_46
  10. Gavrilov GV, Radkov MN, Gaydar BV, et al. Invasive preoperative diagnosis of idiopathic normal pressure hydrocephalus. Russian Journal of Neurosurgery. 2020;22(1): 31–38. doi: 10.17650/1683-3295-2020-22-1-31-38
  11. Iliff JJ, Wang M, Liao YA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111. doi: 10.1126/scitranslmed.3003748
  12. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study. Cereb Blood Flow Metab. 2019;39(7):1355–1368. DOI: 10/1177/0271678X18760974
  13. Ringstad G, Valnes LM, Dale AM, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3(13):e121537. doi: 10.1172/jci.insight.121537
  14. Armstrong RA. A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathol. 2014;52(3):211–225. doi: 10.5114/fn.2014.45562
  15. Eide PK, Valnes LM, Pripp AH, et al. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab. 2020;40(9):1849–1858. doi: 10.1177/0271678X19874790
  16. Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn J Radiol. 2017;35(4):172–178. doi: 10.1007/s11604-017-0617-z
  17. Yokota H, Vijayasarathi A, Cekic M, et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr Gerontol Geriatr Res. 2019;2019:5675014. doi: 10.1155/2019/5675014
  18. Bae YJ, Choi BS, Kim JM, et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat Disord. 2021;82:56–60. doi: 10.1016/j.parkreldis.2020.11.009
  19. Soldozy S, Yağmurlu K, Kumar J, et al. Interplay between vascular hemodynamics and the glymphatic system in the pathogenesis of idiopathic normal pressure hydrocephalus, exploring novel neuroimaging diagnostics. Neurosurg Rev. 2022;45:1255–1261 doi: 10.1007/s10143-021-01690-3
  20. Akiyama Y, Yokoyama R, Takashima H, et al. Accumulation of macromolecules in idiopathic normal pressure hydrocephalus. Neurol Med Chir. (Tokyo) 2021;61(3):211–218. doi: 10.2176/nmc.oa.2020-0274
  21. Abu-Rumeileh S, Giannini G, Polischi B, et al. Revisiting the cerebrospinal fluid biomarker profile in idiopathic normal pressure hydrocephalus: the bologna pro-hydro study. J Alzheimer's Dis. 2019;68(2):723–733. doi: 10.3233/JAD-181012
  22. Kanemoto H, Mori E, Tanaka T, et al. Cerebrospinal fluid amyloid beta and response of cognition to a tap test in idiopathic normal pressure hydrocephalus: a case–control study. Int Psychogeriatr. 2021:1–9.
  23. Jeppsson A, Wikkelsö C, Blennow K, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg. Psychiatry. 2019:90(10):11171123. doi: 10.1136/jnnp-2019-320826
  24. Jeppsson A, Zetterberg H, Blennow K, et al. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80(15):1385–1392. doi: 10.1212/WNL.0b013e31828c2fda
  25. Brandner S, Thaler C, Lelental N, et al. Ventricular and lumbar cerebrospinal fluid concentrations of Alzheimer's disease biomarkers in patients with normal pressure hydrocephalus and posttraumatic hydrocephalus. J Alzheimer's Dis. 2014;41(4):1057–1062. doi: 10.3233/JAD-132708
  26. Jingami N, Uemura K, Asada-Utsugi M, et al. Two-point dynamic observation of Alzheimer’s disease cerebrospinal fluid biomarkers in idiopathic normal pressure hydrocephalus. J Alzheimer's Dis. 2019;72(1):271–277. doi: 10.3233/JAD-190775
  27. Lukkarinen H, Tesseur I, Pemberton D, et al. Time trends of cerebrospinal fluid biomarkers of neurodegeneration in idiopathic normal pressure hydrocephalus. J Alzheimer's Dis. 2021;80(4): 1629–1642. doi: 10.3233/JAD-201361
  28. Liao CL, Tseng PH, Huang HY, et al. Lumbar-peritoneal shunt for idiopathic normal pressure hydrocephalus and secondary normal pressure hydrocephalus. Tzu Chi Med J. 2022;34(3):323–328. doi: 10.4103/tcmj.tcmj_125_21
  29. Miyajima M, Kazui H, Mori E, et al. One-year outcome in patients with idiopathic normal-pressure hydrocephalus: comparison of lumboperitoneal shunt to ventriculoperitoneal shunt. J Neurosurg. 2016;125(6):1483–1492. doi: 10.3171/2015.10.JNS151894
  30. Yang TH, Chang CS, Sung WW, et al. Lumboperitoneal shunt: a new modified surgical technique and a comparison of the complications with ventriculoperitoneal shunt in a single center. Medicina (Kaunas). 2019;55(10):643. doi: 10.3390/medicina55100643

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies