The possibility of using perfluorocarbon compounds for virus-associated pneumonia treatment

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The issues of practicality in using perfluorocarbon gas transport emulsions (or pure perfluorocarbons) in severe virus-associated pneumonia treatment were considered, including those caused by coronavirus infection. Perfluorocarbons are fully fluorinated carbon compounds, on the basis of which artificial blood substitutes have been developed — gas transport perfluorocarbon emulsions for medical purposes. Perfluorocarbon emulsions were widely used in the treatment of patients in critical conditions of various genesis at the end of the last–the beginning of this century, accompanied by hypoxia, disorders of rheological properties and microcirculation of blood, perfusion of organs and tissues, intoxication, and inflammation. Large-scale clinical trials have shown a domestic plasma substitute advantage based on perfluorocarbons (perfluoroan) over foreign analogues. It is quite obvious that the inclusion of perfluorocarbon emulsions in the treatment regimens of severe virus-associated pneumonia can significantly improve this category’s treatment results after analyzing the accumulated experience. A potentially useful area of therapy for acute respiratory distress syndrome is partial fluid ventilation with the use of perfluorocarbons as respiratory fluids as shown in the result of many studies on animal models and existing clinical experience. There is no gas-liquid boundary in the alveoli, as a result of which, there is an improvement in gas exchange in the lungs and a decrease in pressure in the respiratory tract when using this technique, due to the unique physicochemical properties of liquid perfluorocarbons. A promising strategy for improving liquid ventilation effectiveness using perfluorocarbon compounds is a combination with other therapeutic methods, particularly with moderate hypothermia. Antibiotics, anesthetics, vasoactive substances, or exogenous surfactant can be delivered to the lungs during liquid ventilation with perfluorocarbons, including to the affected areas, which will enhance the drugs accumulation in the lung tissues and minimize their systemic effects. However, the indications and the optimal technique for conducting liquid ventilation of the lungs in patients with acute respiratory distress syndrome have not been determined currently. Further research is needed to clarify the indications, select devices, and determine the optimal dosage regimens for perfluorocarbons, as well as search for new technical solutions for this technique.

Full Text

Restricted Access

About the authors

Genrikh A. Sofronov

Military Medical Academy of S.M. Kirov

Email: gasofronov@mail.ru
ORCID iD: 0000-0002-8587-1328
SPIN-code: 7334-4881
Scopus Author ID: 7003953555
ResearcherId: G-4791-2015

Doctor of Medical Sciences, Professor

Russian Federation, Saint Petersburg

Elena V. Murzina

Military Medical Academy of S.M. Kirov

Author for correspondence.
Email: elenmurzina@mail.ru
ORCID iD: 0000-0001-7052-3665
SPIN-code: 5188-0797

Candidate of Biological Sciences

Russian Federation, Saint Petersburg

Diana Yu. Lazarenko

Military Medical Academy of S.M. Kirov

Email: ldianka@yandex.ru
ORCID iD: 0000-0001-9067-9333
SPIN-code: 2944-6872

Candidate of Medical Sciences

Russian Federation, Saint Petersburg

Lyudmila V. Buryakova

Military Medical Academy of S.M. Kirov

Email: ludmila.buryakova@yandex.ru
ORCID iD: 0000-0002-6737-1450
SPIN-code: 3355-9862

Candidate of Biological Sciences

Russian Federation, Saint Petersburg

Tat'yana G. Krylova

Military Medical Academy of S.M. Kirov

Email: niurakr@yandex.ru
ORCID iD: 0000-0002-8867-0054
SPIN-code: 3797-6757

Candidate of Biological Sciences

Russian Federation, Saint Petersburg

References

  1. Salukhov VV, Kharitonov MA, Kryukov EV, et al. Topical issues of diagnostics, examination and treatment of patients with COVID-19-associated pneumonia in different countries and continents. Medical Council. 2020;(21):96–102. (In Russ.). doi: 10.21518/2079-701X-2020-21-96-102
  2. Ministerstvo Zdravookhraneniya RF. Vremennye metodicheskie rekomendatsii. Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 15 (22.02.2022). Moscow: MZ RF, 2022. 245 p. (In Russ.).
  3. Minnullin TI, Stepanov AV, Chepur SV, et al. Immunological aspects of SARS-CoV-2 coronavirus damage. Bulletin of the Russian Military Medical Academy. 2021;74(2):187–198. (In Russ.). doi: 10.17816/brmma72051
  4. Salukhov VV, Kryukov EV, Chugunov AA, et al. The role and place of glucocorticosteroids in treatment of COVID-19 pneumonia without hypoxemia. Medical Council. 2021;(12):162–172. (In Russ.). doi: 10.21518/2079-701X-2021-12-162-172
  5. Davydov DV, Chernetsov VA, Chernov SA, et al. Oxygenotherapy and respiratory support in patients with COVID-19 in the N.N. Burdenko Main military clinical hospital of the ministry of defense of the Russia Federation. Prakticheskaya pul’monologiya. 2021;(1): 3–12. (In Russ.).
  6. Maevsky E, Ivanitsky G, Bogdanova L, et al. Clinical results of Perftoran application: present and future. Artif Cells Blood Substit Immobil Biotechnol. 2005;33(1):37–46. doi: 10.1081/bio-200046654
  7. Latson GW. Perftoran (Vidaphor) – introduction to western medicine. Shock. 2019;52(15):65–69. doi: 10.1097/SHK.0000000000001063
  8. Wang C, Hornby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470–473. doi: 10.1016/S0140-6736(20)30185-9
  9. Lai C-C, Liu Y-H, Wang C-Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–412. doi: 10.1016/j.jmii.2020.02.012
  10. Aleksandrova NP. Pathogenesis of respiratory failure in coronavirus disease (COVID-19). Integrative Physiology. 2020;1(4):285–293. (In Russ.). doi: 10.33910/2687-1270-2020-1-4-285-293
  11. Bazykina EA, Trotsenko OE. Peculiarities of community acquired pneumonia triggered by novel coronavirus SARS-CoV-2 (review). Bulletin Physiology and Pathology of Respiration. 2020;(78):135–146. (In Russ.). doi: 10.36604/1998-5029-2020-78-135-146
  12. González-Ruiz FJ, Lazcano-Díaz EA, Baeza Herrera LA, et al. Endotheliitis, shunts, and ventilation-perfusion mismatch in coronavirus disease 2019: a literature review of disease mechanisms. Ann Med Surg. 2022;78:103820. doi: 10.1016/j.amsu.2022.103820
  13. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/s140-6736(20)30183-5
  14. Kobylyansky VI. Morphofunctional changes in the conducting and respiratory parts of the bronchopulmonary system in COVID-19 (analytical review). Infectious Diseases: News, Opinions, Training. 2021;10(2):6 9–77. (In Russ.). doi: 10.33029/2305-3496-2021-10-2-69-77
  15. Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020;22(2):95–97. doi: 10.51893/2020.2.pov2
  16. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  17. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann of Intern Med. 2020;173(5):350–361. doi: 10.7326/M20-2566
  18. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. doi: 10.1016/j.jacc.2020.04.031
  19. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. DOI: 10.1016/j. thromres.2020.04.013
  20. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVID-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):327–331. doi: 10.23812/CONTI-E
  21. Karyakin NN, Kostina OV, Galova EA, et al. Disorders of the erythrocytes rheological properties in patients with COVID-19. Medical Almanac. 2020;(3):52–56. (In Russ.).
  22. Murphy P, Glavey S, Quinn J. Anemia and red blood cell abnormalities in COVID-19. Leuk Lymphoma. 2021;62(2):1539. doi: 10.1080/10428194.2020.1869967
  23. Clark L, Golian F. Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science. 1966;152(3730):1752–1755. doi: 10.1126/science.152.3730.1755
  24. Geyer R, Monroe R, Taylor K. Survival of rats totally perfused with a fluorocarbon — detergent preparation. In: Norman JC, Folkman J, editors. Organ perfusion and preservation. New York: 1968. P. 85–96.
  25. Hill SE. Perfluorocarbons: knowledge gained from clinical trials. Shock. 2019;52(15):60–64. doi: 10.1097/SHK.0000000000001045
  26. Jahr JS, Guinn NR, Lowery DR, et al. Blood Substitutes and oxygen therapeutics: a review. Anesth Analg. 2021;132(1):119–129. doi: 10.1213/ANE.0000000000003957
  27. Jägers J, Wrobeln A, Ferenz KB. Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflügers Arch. 2021;473(2): 139–150. doi: 10.1007/s00424-020-02482-2
  28. Wrobeln A, Laudien J, Groß-Heitfeld Ch, et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility. Eur J Pharm Biopharm. 2017;115:52–64. doi: 10.1016/j.ejpb.2017.02.015
  29. Wrobeln A, Jägers J, Quinting T, et al. Albumin-derived perfluorocarbon-based artificial oxygen carriers can avoid hypoxic tissue damage in massive hemodilution. Sci Rep. 2020;10(1):11950. doi: 10.1038/s41598-020-68701-z
  30. Hester S, Ferenz KB, Eitner S, Langer K. Development of a lyophilization process for long-term storage of albumin-based perfluorodecalin-filled artificial oxygen carriers. Pharmaceutics. 2021;13(4):584. doi: 10.3390/pharmaceutics13040584
  31. Zhuang J, Ying M, Spiekermann K, et al. Biomimetic nanoemulsions for oxygen delivery in vivo. Adv Mater. 2018;30(49):e1804693. doi: 10.1002/adma.201804693
  32. Stanin DM, Tsarev AV, Dudukina SA, Oreshnikov KP. Perftoran v komplekse intensivnoi terapii. Sindrom ostrogo legochnogo povrezhdeniya/ostryi respiratornyi distress-sindrom (SOLP/ORDS). Perftororganicheskie soedineniya v biologii i meditsine. Pushchino, 2001. P. 167–170. (In Russ.).
  33. Kovelenov AYu, Lobzin YuV. Perftoruglerodnye soedineniya kak novoe napravlenie patogeneticheskoi terapii tyazhelykh form virusnykh gepatitov. Clinical Medicine (Russian Journal). 2003;81(5):47–51. (In Russ.).
  34. Kovelenov AYu, Voitenkov BO, Maevskii EI, Pushkin SYu. Perspektivy lechebnogo primeneniya perftoruglerodnykh soedinenii pri VICH-infektsii. Rossiiskii biomeditsinskii zhurnal Medline.ru. 2004;5:214–216. (In Russ.).
  35. Moroz VV, Chernysh AM, Kozlova EK. Coronavirus SARS-CoV-2: Hypotheses of Impact on the Circulatory System, Prospects for the Use of Perfluorocarbon Emulsion, and Feasibility of Biophysical Research Methods. General Reanimatology. 2020;16(3):4–13. (In Russ.). doi: 10.15360/1813-9779-2020-3-0-1
  36. Hamilton M, Peek GJ, Dux A. Partial liquid ventilation. Pediatr Radiol. 2005;35(11):1152–1156. DOI: 10/1007/s00247-005-1548-x
  37. Sarkar S, Paswan A, Prakas S. Liquid ventilation. Anesth Essays Res. 2014;8(3):277–282. doi: 10.4103/0259-1162.143109
  38. Moroz VV, Vlasenko AV, Golubev AM, et al. Differentiated Treatment for Acute Respiratory Distress Syndrome Induced by Direct and Indirect Etiological Factors. General Reanimatology. 2011;7(4):5–15. (In Russ.). doi: 10.15360/1813-9779-2011-4-5
  39. Korepanov AL, Shunevych OB, Vasilenko IYu. Liquid breathing. Total liquid ventilation of the lungs (message two). Vestnik fizioterapii i kurortologii. 2018;24(4):86–93. (In Russ.).
  40. Kohlhauer M, Boissady E, Lidouren F, et al. A new paradigm for lung-conservative total liquid ventilation. EBioMedicine. 2020;52:102365. doi: 10.1016/j.ebiom.2019.08.026
  41. Korepanov AL. Liquid breathing. Partial fluid ventilation of the lungs (first message). Vestnik fizioterapii i kurortologii. 2018;24(2): 62–70. (In Russ.).
  42. Hirschl RB, Pranikoff T, Gauger P, et al. Liquid ventilation in adults, children, and full-term neonates. Lancet. 1995;346(8984):1201–1202. doi: 10.1016/s0140-6736(95)92903-7
  43. Leach CL, Greenspan JS, Rubenstein SD, et al. Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome. The LiquiVent Study Group. N Engl J Med. 1996;335(11):761–767. doi: 10.1056/NEJM199609123351101
  44. Hirschl RB, Conrad S, Kaiser R, et al. Partial liquid ventilation in adult patients with ARDS: a multicenter phase I–II trial. Adult PLV Study Group. Ann Surg. 1998;228(5):692–700. doi: 10.1097/00000658-199811000-00009
  45. Hirschl RB, Croce M, Gore D, et al. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. Am J Respir. Crit Care Med. 2002;165(6):781–787. doi: 10.1164/ajrccm.165.6.2003052
  46. Poptsov VN, Balandyuk AE. Pervyi klinicheskii opyt ispol’zovaniya chastichnoi zhidkostnoi ventilyatsii na osnove ehndobronkhial’nogo vvedeniya perftorana v kompleksnoi terapii respiratornogo distress-sindroma. Biomeditsinskii zhurnal Medline.ru. 2004;5:173–174. (In Russ.).
  47. Moroz VV, Ostapchenko DA, Vlasenko AV, et al. Endotracheal Use of Perfluorane in Patients with Acute Respiratory Distress Syndrome Under Artificial Ventilation. General Reanimatology. 2005;1(2):5–11. (In Russ.). doi: 10.15360/1813-9779-2005-2-5-11
  48. Klyuchevsky VV, Vvedensky VP. Effectiveness of endobronchial therapy of aspiration pneumonia in combinative trauma. Bulletin of the Ivanovo State Medical Academy. 2012;17(3):43–47. (In Russ.).
  49. Golubev AM, Kuzovlev AN, Sundukov DV, Golubev MA. Morphological Characteristics of the Lung during Lipopolysaccharide and Perfluorane Inhalation. General Reanimatology. 2015;11(1):6–13. (In Russ.). doi: 10.15360/1813-9779-2015-1-6-13
  50. Giraudeau C, Flament J, Marty B, et al. A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide. Magn Reson Med. 2010;63(4):1119–1124. doi: 10.1002/mrm.22269
  51. Gerber F, Krafft MP, Vandamme TF, et al. Potential use of fluorocarbons in lung surfactant therapy. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(2):211–220. doi: 10.1080/10731190601188307
  52. Inci I, Arni S, Iskender I, et al. Functional, metabolic and morphologic results of ex vivo donor lung perfusion with a perfluorocarbon-based oxygen carrier nanoemulsion in a large animal transplantation model. Cells. 2020;9(11):2501. doi: 10.3390/cells9112501
  53. Chang H, Li M-H, Chen C-W, et al. Intravascular FC-77 attenuates phorbol myristate acetate-induced acute lung injury in isolated rat lungs. Crit Care Med. 2008;36(4):1222–1229. doi: 10.1097/CCM.0b013e31816a04d3
  54. Chu S-J, Huang K-L, Wu S-Y, et al. Systemic administration of FC-77 dampens ischemia–reperfusion-induced acute lung injury in rats. Inflammation. 2013;36:1383–1392. doi: 10.1007/s10753-013-9678-z
  55. Galvin IM, Steel A, Pinto R, et al. Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;2013(7):CD003707. doi: 10.1002/14651858.CD003707.pub3
  56. Lehmler H-J. Perfluorocarbon compounds as vehicles for pulmonary drug delivery. Expert Opin Drug Deliv. 2007;4(3):247–262. doi: 10.1517/17425247.4.3.247
  57. Sieswerda E, de Boer MG, Bonten MM, et al. Recommendations for antibacterial therapy in adults with COVID-19 – an evidence-based guideline. Clin Microbiol Infect. 2021;27(1):61–66. doi: 10.1016/j.cmi.2020.09.041
  58. Garcia-Vidal C, Sanjuan G, Moreno-García E, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clin Microbiol Infect. 2021;27(1):83–88. doi: 10.1016/j.cmi.2020.07.041
  59. Beloborodova NV, Zuev EV, Zamyatin MN, Gusarov VG. Causal Therapy of COVID-19: Critical Review and Prospects. General Reanimatology. 2020;16(6):65–90. (In Russ.). doi: 10.15360/1813-9779-2020-4-0-1
  60. Franz AR, Rőhlke W, Franke RP, et al. Pulmonary administration of perfluorodecaline-gentamicin and perfluorodecaline-vancomycin emulsions. Am J Respir Crit Care Med. 2001;164(9):1595–1600. doi: 10.1164/ajrccm.164.9.214088
  61. Jeng M-J, Soong W-J, Chiou S-Y, et al. Efficacy of intratracheal instillation of a meropenem/perfluorochemical suspension in acute lung injury. Pediatr Pulmonol. 2012;47(2):189–198. doi: 10.1002/ppul.21523
  62. Dickson EW, Doern GV, Trevino L, et al. Prevention of descending pneumonia in rats with perflubron-delivered tobramycin. Acad Emerg Med. 2003;10(10):1019–1023. doi: 10.1197/S1069-6563(03)00335-X
  63. Orizondo RA, Babcock CI, Fabiilli ML, et al. Characterization of a reverse-phase perfluorocarbon emulsion for the pulmonary delivery of tobramycin. J Aerosol Med. Pulm Drug Deliv. 2014;27(5):392–399. doi: 10.1089/jamp.2013.1058
  64. Orizondo RA, Fabiilli ML, Morales MA, Cook KE. Effects of emulsion composition on pulmonary tobramycin delivery during antibacterial perfluorocarbon ventilation. J Aerosol Med. Pulm Drug Deliv. 2016;29(3):251–259. doi: 10.1089/jamp.2015.1235
  65. Kimless-Garber DB, Wolfson MR, Carlsson C, Shaffer TH. Halothane administration during liquid ventilation. Respir Med. 1997;91(5):255–262. doi: 10.1016/s0954-6111(97)90028-7
  66. Burkhardt W, Kraft S, Ochs M, et al. Persurf, a new method to improve surfactant delivery: a study in surfactant depleted rats. PLoS One. 2012;7(10):e47923. doi: 10.1371/journal.pone.0047923
  67. Ferguson SK, Pak DI, Hopkins JL, et al. Pre-clinical assessment of a water-in-fluorocarbon emulsion for the treatment of pulmonary vascular diseases. Drug Deliv. 2019;26(1):147–157. doi: 10.1080/10717544.2019.1568621
  68. Wei F, Wen S, Wu H, et al. Partial liquid ventilation-induced mild hypothermia improves the lung function and alleviates the inflammatory response during acute respiratory distress syndrome in canines. Biomed Pharmacother. 2019;118:109344. doi: 10.1016/j.biopha.2019.109344
  69. Wei F, Hu Y, Jiang M, et al. Effect of perfluorocarbon partial liquid ventilation-induced hypothermia on dogs with acute lung injury. Ann Palliat Med. 2020;9(4):2141–2151. doi: 10.21037/apm-20-1275
  70. Sage M, Nadeau M, Kohlhauer M, et al. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics. Cryobiology. 2016;73(1):99–101. doi: 10.1016/j.cryobiol.2016.05.009
  71. Rambaud J, Lidouren F, Sage M, et al. Hypothermic total liquid ventilation after experimental aspiration-associated acute respiratory distress syndrome. Ann Intensive Care. 2018;8:57. doi: 10.1186/s13613-018-0404-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies