Reactive changes in the rat spinal cord in experimental neuropathy with and without magnetic stimulation

Abstract


Performing an experiment in which electronically microscopically studied the nature of reactive changes in the structural thin section of the spinal cord, as well as their dynamics during transcranial magnetic stimulation for 1 month after experimental neuromesis and after compression-ischemic neuropathy of the sciatic nerve. The reported development of compensatory-restorative processes in neurons, glial cells and the microvasculature of the lumbar spinal cord in rats that receive treatment with transcranial magnetic stimulation has been established. It was shown, that in all groups of rats changes in the structures of the lumbar thickening of the rat spinal cord developed in the form of depletion of the cytoplasm, destruction of organelles, changes in the nuclei and development of apoptosis of neurons and glial cells, destruction of the membranes and axial cylinders of myelin fibers. Moreover, these changes are more pronounced in groups after experimental neuromesis. However, in groups of rats, both after compression-ischemic neuropathy and after experimental neuromesis after treatment with transcranial magnetic stimulation, there were signs of the development of recovery processes in the form of intracellular repair of neurons, proliferation of oligodendrocytes, restoration of the structure of myelin fibers and capillaries, and the absence of free red blood cells in the extracellular space. The obtained morphological data confirm the effectiveness of treatment of transcranial magnetic stimulation of injuries of the peripheral nervous system in relation to neurons, glial cells, myelin and non-myelin fibers of the spinal cord.

Full Text

Введение. Значимость травматической невропа- тии определяется как частотой встречаемости (1,5- 3% от числа травм в мирное время), так и трудностью лечения и реабилитации больных. Трудности диагно- стики и лечения больных данного профиля объясня- ются, в частности, широким участием центральной нервной системы (ЦНС) в реакции на травму нерва. В последние годы эффективность транскраниаль- ной магнитной стимуляции (ТКМС) оценивалась при многих заболеваниях нейрогенной и иной природы, в частности при миофасциальном болевом синдро- ме и хронических неврогенных пароксизмальных прозопалгиях [5, 10], в том числе было доказано, что положительное воздействие ТКМС обусловлено возбуждающим и активизирующим действием маг- нитного поля на развитие компенсаторно-восстано- вительных процессов за счет стимуляции мембранных процессов [9]. Ранее нами [2, 4] была показана эффективность ТКМС для лечения седалищного нерва (СН) и иннер- вируемой им мышцы крыс при компрессионно-ише- мической невропатии (КИН). На основании того, что морфология нерва, мышцы и особенно нервно-мы- шечных синапсов после лечения отличалась от тако- вой у крыс контрольной группы, возможно сделать вывод об эффективности ТКМС в восстановлении функциональной активности нерва. Цель исследования. Изучить влияние ТКМС на развитие компенсаторно-восстановительных процес- сов в поясничном отделе спинного мозга (СМ) крыс при КИН седалищного нерва и его экспериментальном невротмезисе (ЭН) с последующим наложением не- врального шва. Материалы и методы. В эксперименте было за- действовано 32 крысы. Все животные были разделены на 4 группы по 8 крыс в каждой: 1-я группа - животные, которым не проводилось лечение после КИН, 2-я группа - животные, которым не проводилось лечение после ЭН (контрольные группы - КГ), животные 3-й и 4-й групп подвергались лечению с помощью ТКМС: 3-я группа после нанесения КИН, 4-я группа - после ЭН. КИН создавалась по методике Н.А. Рашидова [8], а ЭН - хирургическим путём в несколько этапов. Вначале производился разрез по проекционной линии левого СН крысы и его ограничение от остальных тканей, за- тем СН пересекался поперек на уровне верхней трети, создавался диастаз и накладывался эпиневральный шов в месте пересечения. В конце операции рана 166 2 (66) - 2019 ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ Экспериментальные исследования ушивалась, и животные помещались в клетку. Кры- сам из 3-й и 4-й групп проводили ритмическую ТКМС интенсивностью 0,8-1 Тесла, частотой 3 Гц и продол- жительностью 3-5 мин ежедневно в течение 1 месяца. Для исследования нейроморфологических особен- ностей естественной и модулированной нейропла- стичности седалищного нерва при КИН и ЭН у крыс всех групп проводили электронно-микроскопическое изучение (ЭМИ) поясничного утолщения СМ через 1 месяц от начала эксперимента. Материал для ЭМИ подготавливали по стандартным методикам [7]. Экс- перимент проводился в соответствии с правилами проведения научно-исследовательских работ с ис- пользованием экспериментальных животных. Результаты и их обсуждение. Установлено, что у крыс, получавших в течение месяца ТКМС, общее состояние было вполне удовлетворительным по всем оцениваемым показателям (аппетит, подвижность). В то же время у большинства животных КГ уже через 1-2 дня после операции наблюдалось отчетливое ухудшение общего состояния; трофические расстрой- ства в пораженной конечности после ЭН достигали максимума, а в поздние сроки (через 2 недели после травмы) были более грубыми. При ЭМИ поясничного отдела СМ через 1 месяц (рис. 1) после КИН у крыс КГ нейроны часто были ги- перхромными, перегруженными крупными плотными осмиофильными тельцами (лизосомами), липидами, а митохондрии встречались редко (рис. 1а). В ядрах хроматин образовывал неравномерные гетерохро- матиновые скопления, а ядрышки были умеренно крупными и плотными. Часть нейронов была дистро- фически изменена по светлому типу, и в их цитоплазме находилось небольшое количество сильно изменен- ных органелл. Так, канальцы эндоплазматической сети (ЭПС) были либо расширены, либо разрушены. Через 1 месяц после лечения у животных после КИН встречались гиперхромные и нормохромные ней- роны в равной степени (рис. 1б), а также единичные нейроны в состоянии внутриклеточной репарации со светлым ядром, крупным ядрышком и большим коли- чеством рибосом и полисом в цитоплазме (рис. 1в). В глиальных клетках СМ у животных КГ после КИН через 1 месяц отмечались значительные изменения в строении ядра и цитоплазмы (рис. 2). У одних астро- цитов кариоплазма была так уплотнена, что по своей структуре напоминала кариоплазму олигодендро- цитов (ОДЦ), а в других астроцитах она была почти прозрачной. В миелинобразующих ОДЦ ядра были резко и неравномерно осмиофильны, а цитоплазма почти не содержала органелл (рис. 2а). В ряде ОДЦ кариоплазма была просветлена, но хроматин образо- вывал очень грубые скопления вдоль кариолеммы. В цитоплазме некоторых ОДЦ встречались скопления полисом и измененные органеллы: митохондрии с деформированными кристами и набухшие канальцы ЭПС почти агранулярного вида; кроме того, единич- ные ОДЦ находились в состоянии некроза (рис. 2б). Через 1 месяц лечения животных после КИН в СМ одни ОДЦ были нормохромными и имели почти типичную структуру ядра и цитоплазмы (рис. 2в), другие были гиперхромными, отдельные ОДЦ находи- лись в состоянии апоптоза. Среди ОДЦ встречались разделившиеся клетки в телофазе митоза с ядрами неравных размеров и повышенной плотностью ка- риоплазмы, а также высоким ядерно-цитоплазмати- ческим соотношением, что свидетельствовало об их незрелости. Разделившиеся ОДЦ имели небольшой общий ободок цитоплазмы с многочисленными ри- босомами, единичными митохондриями с плотной структурой и лизосомами (рис. 2г). МВ у крыс КГ после КИН через 1 месяц были по- лиморфными. В резко измененных МВ отмечалось набухание миелиновых ламелл с потерей их четко- сти и расслоением как по всей толще миелина, так и периаксонально; встречались истончения и разрывы ламелл. Осевые цилиндры (ОЦ) нервных волокон были прозрачны либо умеренно осмиофильны вследствие их сжатия. ‹‹Толстые›› МВ имели выраженные признаки Я Ядр Я а б в Рис. 1. Нейроны поясничного утолщения СМ у крыс после КИН СН: а - КГ: А - нейрон с дистрофией цитоплазмы по светлому типу; Б - гиперхромный нейрон; Я - ядро, ув. ×3000; б - животные после лечения: гиперхромный нейрон с ядром почти типичного строения и плотным неактивным ядрышком (Ядр), в цитоплазме - скопление рибосом и полисом, ув. ×6300; в - участок нейрона с признаками внутриклеточной репарации; Я - ядро нейрона, ув. ×8000 ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ 2 (66) - 2019 167 Экспериментальные исследования а б в г Рис. 2. ОДЦ поясничного утолщения СМ у крыс КГ: а, б - после КИН СН без лечения; в, г - после лечения с помощью ТКМС: а - ОДЦ со значительным изменением хроматина в ядре (Я) и умеренными изменениями цитоплазмы. Рядом с ним А - миелиновое волокно (МВ) с почти сохранным осевым цилиндром и слабо измененным миелином и Б - МВ с выраженной аксонопатией, ув. ×7000; б - некротизированный ОДЦ и МВ с различной степенью миелино- и аксонопатии (1), ув. ×7000; в - ОДЦ с умеренно гиперхромным ядром (Я) и почти не измененной цитоплазмой, ув. ×8000; г - ОДЦ в телофазе митоза - веретено деления (1), ув. ×8000 аксонопатии, а иногда их ОЦ состояли из двух частей: очень плотной и почти прозрачной с измененными ми- тохондриями, окруженными обрывками миелина. ОЦ безмиелиновых волокон (БМВ) почти всегда были обе- днены органеллами частично или полностью (рис. 3а). Через 1 месяц лечения с помощью ТКМС миели- нопатия в МВ была умеренной и проявлялась лишь набуханием и расслоением ламелл. ОЦ имели обыч- ную плотность и содержали несколько повышенное количество митохондрий с плотными кристами. В большинстве БМВ (как и в МВ) ОЦ также были почти полностью сохранными, а вокруг МВ эндоневрий имел обычный вид (рис. 3б). В сосудах микроциркуляторного русла СМ крыс КГ после КИН через 1 месяц цитоплазма эндотелиоци- тов нередко содержала вакуолизированные митохон- дрии без крист и расширенные канальцы ЭПС. Ядра эндотелиоцитов имели типичное строение. Изредка просвет капилляров был заполнен эритроцитами в виде плотных цепочек (капилляростаз). При этом базальная пластинка имела размытое строение, но была сохранной. В прилегающих к сосудам астроци- тах ядра по структуре хроматина напоминали ядра ОДЦ, цитоплазма была обеднена органеллами и содержала лишь слегка измененные канальцы ЭПС (рис. 4а). У животных после КИН через 1 месяц лечения с помощью ТКМС просвет капилляров был свободным, структура эндотелиоцитов - типичной. Ядра имели несколько повышенную плотность кариоплазмы, а их цитоплазма, как и у перицитов, содержала рибосомы, полисомы, единичные фагосомы и митохондрии с плохо различимыми матриксом и кристами. Вблизи капилляров встречались МВ с признаками умеренной миелино- и аксонопатии, имевшие слегка набухшие миелиновые оболочки без четкой структуры миели- новых ламелл и почти не измененные ОЦ (рис. 4б). Через месяц после ЭН у животных КГ около по- ловины крупных нейронов СМ имели признаки по- вреждения. В крупных и в более мелких нейронах канальцев гранулярной ЭПС их было немного, при этом комплекс Гольджи определялся не всегда. Обращало на себя внимание повышенное содержание плотных митохондрий в крупных нейронах. В мелких нейронах одни митохондрии были вакуолизированы, а у других не было четкой структуры. В цитоплазме гиперхромных нейронов встречались крупные вакуоли, заполненные прозрачными митохондриями без крист и везикулами неясного генеза. В целом митохондрий в этих нейронах было меньше, чем в нормохромных. Цистерны ком- плекса Гольджи были единичны, гранулярная ЭПС была развита слабо, ее канальцы были уплощены (рис. 5а). 168 2 (66) - 2019 ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ Экспериментальные исследования ОЦ а б Рис. 3. Участок СМ крыс после КИН в области поясничного утолщения: а - МВ крыс КГ. Наблюдаются умеренные изменения ОЦ и выраженная миелинопатия (А), ув. ×20000; б - МВ крыс после лечения с помощью ТКМС. Наблюдаются умеренная миелинопатия в виде набухания миелина (1) и почти сохранный ОЦ, содержащий плотные митохондрии, ув. ×16000. 2 1 а 1 б Рис. 4. Капилляры поясничного утолщения СМ крыс после КИН: а - капилляры крыс КГ после КИН: вакуолизированные митохондрии (1); капилляростаз (2), ув. ×3150; б - капилляр крысы после КИН и последующего лечения с помощью ТКМС: нормальный эндотелиоцит (1), миелиновые волокна (2), ув. ×4000 Через 1 месяц у животных после ЭН и последую- щего лечения в СМ наблюдались отчетливые признаки восстановления: часто встречались нормохромные нейроны, кариоплазма большинства ядер которых была светлой, а кариолемма - складчатой. Вблизи ядер находились скопления рибосом, а цитоплазма содержала большое количество органелл. Признаком восстановления функциональной активности нейро- нов были также хорошо развитый комплекс Гольджи и нормальная структура большинства митохондрий, хотя в них не всегда были хорошо различимы матрикс и кристы. В ряде нейронов изредка находились лизо- сомы в виде плотных осмиофильных телец (рис. 5б). В единичных нейронах были обнаружены признаки внутриклеточной репарации в виде повышения ко- личества рибосом и полисом и образования новых канальцев гранулярной ЭПС вблизи ядра (рис. 5в). Трофические ОДЦ через 30 суток после ЭН у живот- ных КГ имели умеренно измененную структуру ядер и цитоплазму с уменьшенным набором органелл. У большинства миелинобразующих ОДЦ ядра были с типичным рисунком хроматина, реже - с признаками начала апоптоза; в цитоплазме встречались вакуо- лизированные митохондрии, что свидетельствовало о дистрофических изменениях ОДЦ по светлому типу (рис. 6а). Нейроглиоциты-сателлиты (трофические ОДЦ) после лечения животных с помощью ТКМС имели признаки хорошей морфофункциональной активности. В их цитоплазме находились ядра и митохондрии типичной структуры, многочисленные канальцы гранулярной ЭПС, умеренное количество лизосом (рис. 6б). В МВ проводящих путей СМ после ЭН у крыс КГ были обнаружены признаки миелинопатии в виде рас- слоения слипшихся ламелл миелина и их фрагмента- ции. ОЦ были как сохранными, так и дистрофически измененными по темному типу. В МВ вблизи сосудов также были выявлены признаки миелинопатии, а в БМВ обнаруживалась умеренная либо выраженная аксонопатия по светлому типу (рис. 7а). Через 1 месяц лечения крыс после ЭН в МВ часто не было признаков миелинопатии и аксонопатии, а ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ 2 (66) - 2019 169 Экспериментальные исследования 1 Я Цп 2 а б в Рис. 5. Спинной мозг в области поясничного утолщения у крыс КГ после ЭН (а) и у крыс после лечения ТКМС (б, в): а - участок гиперхромного нейрона с почти неразличимыми органеллами; ув. ×4000; б - светлый нейрон с ядром (Я), имеющим извилистые границы и умеренно измененную структуру хроматина, в цитоплазме (Цп) видны разнообразные органеллы, осмиофильные лизосомы (Л), ув. ×7000; в - участок цитоплазмы нормохромного нейрона с признаками внутриклеточной репарации (1). В контакте с нейроном наблюдается трофический ОДЦ с обычной структурой ядра и цитоплазмы (2), ув. ×4000 1 Я ОЦ ОЦ Я п 2 Я а п б Рис. 6. Участок СМ крыс после ЭН в области поясничного утолщения: а - ОДЦ СМ крысы КГ: 1 - нормохромный ОДЦ со светлым ядром (Я) в активном функциональном состоянии; 2 - ОДЦ с перераспределением хроматина в ядре (Я) по типу апоптоза и цитоплазмой с большим количеством липидов (Л), ув. ×6300; б - ОДЦ спинного мозга крысы после лечения с типичной структурой ядра (Я) и цитоплазмы. Вблизи ОДЦ МВ с нормальными и измененными ОЦ и умеренной миелинопатией, ув. ×5000 ОЦ ОЦ ОЦ ОЦ ОЦ 1 а б Рис. 7. Миелиновые волокна проводящих путей СМ крыс в области поясничного утолщения после ЭН: а - МВ крысы КГ. Визуализируются аксонопатия в виде просветления ОЦ и миелинопатия в виде слипания ламелл миелина, ув. ×4000; б - МВ крысы после лечения с умеренно измененными ОЦ и ремиелинизацией (1), ув. ×16000 их ОЦ были заполнены нейрофибриллами и мито- хондриями с типичной структурой. В МВ рядом с про- лиферирующими ОДЦ ОЦ имели обычную плотность, но их миелиновые оболочки были тоньше и плотнее. В некоторых МВ миелиновые ламеллы были разволок- нены, а перехваты Ранвье изменены. В ряде МВ и БМВ наблюдалась аксонопатия по светлому типу; иногда встречались МВ с признаками ремиелинизации за счет внутреннего мезаксона (рис. 7б). Через 1 месяц после ЭН у крыс КГ в ткани СМ изредка находились свободные эритроциты, что яв- ляется признаком локальных нарушений гематоэнце- 170 2 (66) - 2019 ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ Экспериментальные исследования 1 1 2 а б Рис. 8. Капилляры поясничного утолщения спинного мозга крыс после ЭН: а - крыса КГ после ЭН. Видны свободные эритроциты в нейропиле (1) и капилляростаз (2), ув. ×3150; б - крыса после ЭН с последующим лечением с помощью ТКМС. Наблюдается капилляростаз (1), ув. ×3150 фалического барьера. В просвете капилляров эритро- циты часто располагались в виде монетных столбиков (капилляростаз) (рис. 8а). В сосудах СМ у крыс после ЭН с последующим лечением с помощью ТКМС, как и без лечения, отмечался капилляростаз, но свободных эритроцитов в нейропиле не было (рис. 8б). Факт развития патологических изменений в ЦНС при повреждении периферической нервной системы (ПНС) не вызывает сомнений и достаточно изучен. В нашем исследовании как при КИН, так и при ЭН без лечения (как и предполагалось при планировании экспериментов) имели место нарушения структуры различных компонентов СМ. При сравнении экспериментальных спинномоз- говых нарушений на модели КИН и ЭН установлена общность патоморфологических изменений СМ, в котором через месяц без лечения как при ЭН, так и при КИН развивались дистрофические изменения нейронов, ОДЦ, МВ, а также спинального микроцирку- ляторного русла. Однако у крыс, получавших в течение месяца лечение с помощью ТКМС, выраженность дан- ных нарушений в СМ была значительно ниже. Более того, у этих крыс были выявлены ярко выраженные морфологические признаки компенсаторно-восста- новительных процессов. Патоморфологические нарушения у крыс КГ после КИН в виде набухания нейронов, появления гипо- и гиперхромных нейронов, вакуолизации ОДЦ, разре- жения белого вещества наблюдались и были описаны нами ранее [3]. Подобные изменения у крыс после ЭН также имели место, но у животных, получивших лечение с помощью ТКМС как при КИН, так и при ЭН, отмечались отчетливые структурные улучшения всех элементов СМ. При этом восстановление архитек- тоники СМ животных после КИН при лечении было лучшим, чем в группе крыс после ЭН. Ранее Н.А. Рашидовым [8] было показано, что МС является эффективным терапевтическим методом, повышающим регенераторные возможности ПНС. Полученные другими авторами результаты иссле- дований о влиянии МС на повреждения CМ также свидетельствовали о ее несомненном клиническом эффекте [9, 10]. Улучшение состояния спинального микроцирку- ляторного русла крыс после лечения при ЭН и КИН свидетельствует о благоприятном эффекте ТКМС на гемоперфузию. Подобные эффекты были показаны L. Dohong et al. [9], а также был установлен тот факт, что МС повышает экспрессию генов, активирующих ангиогенез, что приводит к пролиферации сосудов, и, следовательно, к лучшему кровоснабжению структур СМ. Последнее в свою очередь будет благотворно влиять на восстановительные процессы СМ в целом. Также показано, что при ТКМС происходит актива- ция миграции астроцитов в очаги повреждения [11]. Этот факт определенно способствует стабилизации мембран гематоэнцефалического барьера, снижает вероятность геморрагий в вещество мозга. Заключение. Полученные нами результаты свиде- тельствуют об эффективности ТКМС при повреждении ПНС и возможности ее применения как в комплексном лечении больных, так и в виде монотерапии. Однако признаки восстановления СМ при КИН с помощью ТКМС были выражены более отчетливо и в большем объеме, чем после ЭН. Это, на наш взгляд, свиде- тельствует о зависимости степени восстановления СМ от тяжести повреждения периферического нерва (степени аксонотмезиса), что является основанием для проведения дальнейших исследований в данном направлении.

References

  1. Живолупов, С.А. Травматические невропатии и плексопатии (патогенез, клиника, диагностика и лечение): автореф. дис. … д-ра мед наук / С.А. Живолупов. - СПб.: ВМА, 2000. - 43 с.
  2. Живолупов, С.А. Особенности влияния импульсной магнитной стимуляции на компенсаторно-восстановительные процессы при экспериментальной компрессионно-ишемической невропатии у крыс / С.А. Живолупов [и др.] // Вестн. Росс. воен.-мед. акад. - 2010. - № 4 (32). - С. 134-138.
  3. Живолупов, С.А. Ретроградные изменения в спинном мозге крыс после острой компрессионно-ишемической невропатии седалищного нерва / С.А. Живолупов [и др.] // Вестн. Росс. воен.-мед. акад. - 2012. - № 4 (40). - С. 156-162.
  4. Живолупов, С.А. Сравнение влияния нейромидина и магнитной стимуляции на нейропластичность при экспериментальной травматической нейропатии / С.А. Живолупов [и др.] // Журн. невролог. и психиатрии им. С.С. Корсакова. - 2014. - № 114 (6). - С. 57-62.
  5. Мамедов, Т.Р. Эффективность лечения обострений хронических неврологических пароксизмальных прозопалгий м ет од о м т ра нс к ра н иа ль н ой ь ма гн и тн ой ст и му л яц и и: автореф. дис. … канд. мед. наук / Т.Р. Мамедов. - М., 2005. - 26 с.
  6. Медына, О.Д. Магнитная стимуляция в диагностике и лечении травматических невропатий (клиническое и экспериментальное исследование): автореф. дис. … канд. мед. наук / О.Д. Медына. - СПб., 2006. - 181 с.
  7. Миронов, А.А. Методы электронной микроскопии в биологии и медицине / А.А. Миронов, Я.Ю. Комиссарчик, В.А. Миронов. - СПб.: Наука, 1994. - 400 с.
  8. Рашидов, Н.А. Клинико-экспериментальная оценка эффективности некоторых видов консервативной терапии травматических невропатий: автореф. дис. … канд. мед. наук / Н.А. Рашидов. - СПб.: ВМА, 2001. - 24 с.
  9. Dohong, L. Effect of magnetic stimulation in spinal сord on limb аngiogenesis and implication: A рilot study / L. Dohong [et al.] //Ann. Rehabil. Med. - 2012: - Vol. 36 (3). - P. 311-319.
  10. Lefaucheur, J.P. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain / J.P. Lefaucheur [et al.] // J. Neurol. Neurosurg. Psychiatry. - 2004. - Vol. 75 (4). - P. 612-616.
  11. Li, Z. Spinal cord injury-induced astrocyte migration and glial scar formation: effects of magnetic stimulation frequency / Z. Li [et al.] // Indian J. Biochem. Biophys. - 2010: - Vol. 47 (6). - P. 359-363.

Statistics

Views

Abstract - 31

PDF (Russian) - 15

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2019 Zhivolupov S.A., Rashidov N.A., Onishchenko L.S., Kravchuk A.Y., Kostina O.V., Yakovlev E.V., Trufanov A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies