Experience with augmented reality technology in the surgical treatment of a patient with encapsulated metal foreign bodies of lower extremities

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper presents the experience of using augmented reality (AR) technology in the surgical treatment of a patient with encapsulated foreign bodies in the lower extremities. The study aims to test a previously developed algorithm for implementing AR technology in surgery and assess its effectiveness in treating patients with encapsulated foreign bodies. The study was conducted by a multidisciplinary team, comprising the Department of Naval Surgery of the S.M. Kirov Military Medical Academy and the Technical University named after Peter the Great. The medical and technical aspects involved an AR hardware and software package, including a personal computer and Microsoft Hololens II AR glasses. An invasive fixation system was also developed, incorporating a threaded pin used as an X-ray contrast mark with a seat for attaching special markers. The clinical part of the study involved observing and subsequently removing encapsulated foreign bodies in a patient who received inpatient treatment at the clinic of the Department of Naval Surgery in October 2022. Overall, AR technology demonstrated the potential for performing minimally invasive removal of encapsulated foreign bodies in limbs. The detailed visualization provided by AR allowed for determining optimal operative access, the volume of the upcoming operation, and the exact position, skeletotopy, and syntopia of the foreign body during the preoperative stage. Consequently, various intervention options could be digitally simulated. The use of AR technology facilitated intraoperative navigation, enhancing the safety and efficiency of the operation. Thus, AR technology has proven to be a minimally invasive, safe, and effective tool in surgical treatment. However, several unresolved issues require further research.

Full Text

Restricted Access

About the authors

Maria D. Agakhanova

Kirov Military Medical Academy

Email: r_eselevich@mail.ru
ORCID iD: 0000-0003-1048-6203
SPIN-code: 5568-2060

resident

Russian Federation, Saint Petersburg

Vladimir G. Grebenkov

Kirov Military Medical Academy

Email: r_eselevich@mail.ru
ORCID iD: 0000-0002-7881-1714
SPIN-code: 4148-0527

аdjunct

Russian Federation, Saint Petersburg

Valery N. Rumyantsev

Kirov Military Medical Academy

Email: doctorelanmp@bk.ru
ORCID iD: 0000-0001-7526-6282
SPIN-code: 8166-9820

аdjunct

Russian Federation, Saint Petersburg

Mikhail S. Korzhuk

Kirov Military Medical Academy

Email: gensurg@mail.ru
ORCID iD: 0000-0002-4579-2027
SPIN-code: 1031-6315

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Denis A. Dymnikov

Kirov Military Medical Academy

Email: r_eselevich@mail.ru
ORCID iD: 0000-0003-1644-1014
SPIN-code: 6945-7148

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vladimir M. Ivanov

Peter the Great Saint Petersburg polytechnic university

Email: voliva@rambler.ru
ORCID iD: 0000-0001-8194-2718
SPIN-code: 8738-1873

doctor of physical and mathematical sciences, professor

Russian Federation, Saint Petersburg

Anton Yu. Smirnov

Peter the Great Saint Petersburg polytechnic university

Email: ishunpo@gmail.com

programmer

Russian Federation, Saint Petersburg

Oleg V. Balura

Kirov Military Medical Academy

Email: r_eselevich@mail.ru
ORCID iD: 0000-0001-7826-8056
SPIN-code: 9260-9850

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Roman V. Eselevich

Kirov Military Medical Academy

Author for correspondence.
Email: r_eselevich@mail.ru
ORCID iD: 0000-0003-3249-233X
SPIN-code: 1037-8736

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Anna L. Gavrilova

Kirov Military Medical Academy

Email: r_eselevich@mail.ru

radiologist

Russian Federation, Saint Petersburg

References

  1. Nechaev EhA, Gritsanov AI, Fomin NF, Minullin IP. Minno-vzryvnaya travma. Saint Petersburg; Al'd, 1994. 488 p. (In Russ.).
  2. El'skii VN, Klimovitskii VG, Pasternak VN, et al. Kontseptsiya travmaticheskoi bolezni na sovremennom ehtape i aspekty prognozirovaniya ee iskhodov. Archives of clinical and experimental medicine. 2003;12(1):87–92. (In Russ.).
  3. Eckert M, Volmerg JS, Friedrich CM. Augmented reality in medicine: systematic and bibliographic review. JMIR Mhealth Uhealth. 2019;7(4):e10967. doi: 10.2196/10967
  4. González Izard S, Sánchez Torres R, Alonso Plaza Ó, et al. Nextmed: automatic imaging segmentation, 3D reconstruction, and 3D model visualization platform using augmented and virtual reality. Sensors (Basel). 2020;20(10):2962. doi: 10.3390/s20102962
  5. Ivanov VM, Krivtsov AM, Strelkov SV, et al. Practical application of augmented/mixed reality technologies in surgery of abdominal cancer patients. J Imaging. 2022;8(7):183. doi: 10.3390/jimaging8070183
  6. Kotiv BN, Budko IA, Ivanov IA, Trosko IU. Artificial intelligence using for medical diagnosis via implementation of expert systems. Bulletin of the Russian Military Medical Academy. 2021;23(1): 215–224. (In Russ.). doi: 10.17816/brmma63657
  7. Thomas DJ. Augmented reality in surgery: The computer-aided medicine revolution. Int J Surg. 2016;36(A):25. doi: 10.1016/j.ijsu.2016.10.003
  8. Lysenko AV, Razumova AYa, Yaremenko AI, et al. Primary results of using augmented reality technology for various maxillofacial pathologies. Meditsinskii vestnik MVD. 2022;117(2):7–10. (In Russ.). doi: 10.52341/20738080_2022_117_2_7
  9. Leuze C, Zoellner A, Schmidt AR, et al. Augmented reality visualization tool for the future of tactical combat casualty care. J Trauma Acute Care Surg. 2021;91(2S):S40–S45. doi: 10.1097/TA.0000000000003263
  10. Ivanov VM, Krivtsov AM, Strelkov SV, et al. Intraoperative use of mixed reality technology in median neck and branchial cyst excision. Future Internet. 2021;13(8):214. doi: 10.3390/fi13080214
  11. Kasimov RR, Zavrazhnov AA, Zavrazhnov AI, et al. Clinical and epidemiological characteristics severe injuries in military personnel in peacetime. Emergency medical care. 2022;23(2):4–13. (In Russ.). doi: 10.24884/2072-6716-2022-23-2-4-13
  12. Zawy Alsofy S, Nakamura M, Suleiman A, et al. Cerebral anatomy detection and surgical planning in patients with anterior skull base meningiomas using a virtual reality technique. J Clin Med. 2021;10(4):681. doi: 10.3390/jcm10040681
  13. Certificate of registration of the computer program RUS 2021668401, 15.11.2021. Appl. № 2021667400/29.10.2021. Agafonova MV, Gaivoronskii IV, Dorozhkin RV, et al. Programma vizualizatsii protsessov funktsional'noi anatomii tsentral'noi nervnoi sistemy v rezhimakh AR/VR. (In Russ.).
  14. Lysenko A, Razumova A, Yaremenko A, et al. The first clinical use of augmented reality to treat salivary stones. Med Case Rep Dent. 2020;5960421. doi: 10.1155/2020/5960421
  15. Grebenkov VG, Rumyantsev VN, Ivanov VM, et al. Perioperative augmented reality technology in surgical treatment of locally advanced recurrent rectal cancer. Pirogov Russian Journal of Surgery. 2022;(12-2):44–53. (In Russ.). doi: 10.17116/hirurgia202212244
  16. Shapovalov VM, Gladkov RV. Explosive damage in peacetime: epidemiology, pathogenesis and main clinical manifestations. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2014;(3):5–16. (In Russ.). doi: 10.25016/2541-7487-2014-0-3-5-16

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Algorithm of applying AR technology in lower limb surgery

Download (134KB)
3. Fig. 2. Implantation of a pin into the lateral condyle of the femur

Download (164KB)
4. Fig. 3. Installation of magnets on the posterior surface of the upper third of the right thigh

Download (228KB)
5. Fig. 4. Fixing the marker to the installed magnets

Download (418KB)
6. Fig. 5. 3D models of the lower extremities simulating limb bony structures, muscles, vessels, nerves, and IIT of both thighs. The proposed planes of surgical access are shown in yellow

Download (160KB)
7. Fig. 6. 3D model of the lower extremities, illustrating the mutual arrangement of bone structures, IIT, large vessels, and nerves: a — right lower limb; b — left lower limb

Download (223KB)
8. Fig. 7. Image of the right (а) and left (b) hips, with the Hololens projected on the glasses during surgery

Download (309KB)
9. Fig. 8. Removed foreign bodies of the right (а) and left (b) femur

Download (187KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies