Impact of the new coronavirus infection pandemic on the course of coronary heart disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study analyzes the impact of the new coronavirus infection pandemic on the course of coronary heart disease. It highlights the role of factors such as endothelial dysfunction, microvascular hypoperfusion, thrombosis, and systemic inflammation in worsening cardiovascular pathology, including coronary heart disease. The paper also explores additional causes for the deterioration of coronary heart disease during the peak of the pandemic. Despite recommendations advocating for percutaneous intervention in all patients with acute coronary syndrome and S–T-segment elevation, there has been a notable decrease in the number of percutaneous intervention procedures performed during the peak of the pandemic. This decline is observed in patients with both S–T-segment elevation and those without (reductions of 21% and 37%, respectively). Despite the recommendations advocating for percutaneous intervention in all patients with acute coronary syndrome and S–T-segment elevation, there has been a notable decrease in the number of percutaneous intervention procedures performed during the peak of pandemic. This decline is observed in patients with both S–T-segment elevation and those without (reductions of 21% and 37%, respectively). Furthermore, there has been an increase in the time interval between ambulance contact and the execution of percutaneous procedures, resulting in prolonged myocardial ischemia and subsequently poorer patient prognosis. Moreover, due to limitations in the ability to provide inpatient examination and treatment for individuals with chronic heart failure, there has been a pronounced exacerbation of the condition and an increase in mortality rates. Similarly, the provision of cardiac rehabilitation after myocardial infarction has been significantly restricted. Given the extensive number of patients who have been affected or continue to suffer from new coronavirus infection, it is of utmost importance to develop predictive models that account for the development of post-new coronavirus infection syndrome and the emergence of early and late complications of a new coronavirus infection, including coronary artery disease, and comorbidities. The current risk assessment models, aimed at predicting mortality and guiding the treatment of patients with new coronavirus infection or post-infection, do not comprehensively consider all the necessary parameters nor do they predict the emergence of long-term complications. Therefore, further prospective studies are required to address these limitations.

Full Text

Restricted Access

About the authors

Ruslan I. Litvinenko

Kirov Military Medical Academy

Author for correspondence.
Email: litvius@yandex.ru
ORCID iD: 0000-0001-8435-9958
SPIN-code: 8981-4000

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Sergey V. Gaiduk

Kirov Military Medical Academy

Email: litvius@yandex.ru
ORCID iD: 0000-0003-1524-9493
SPIN-code: 8602-4922

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

References

  1. Zaitsev AA, Chernov SA, Kryukov EV, et al. Prakticheskii opyt vedeniya patsientov s novoi koronavirusnoi infektsiei COVID-19 v statsionare (predvaritel'nye itogi i rekomendatsii). Lechaschi vrach. 2020;(6):74–79. (In Russ.) doi: 10.26295/OS.2020.41.94.014
  2. Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology and Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA). Cardiovasc Res. 2021;117(14):2705–2729. doi: 10.1093/cvr/cvab298
  3. Aleksova A, Fluca AL, Gagno G, et al. Long-term effect of SARS-CoV-2 infection on cardiovascular outcomes and all-cause mortality. Life Sci. 2022;310:121018. doi: 10.1016/j.lfs.2022.121018
  4. Morrow AJ, Sykes R, McIntosh A, et al. A multisystem, cardio-renal investigation of post-COVID-19 illness. Nat Med. 2022;28(6):1303–1313. doi: 10.1038/s41591-022-01837-9
  5. Doeblin P, Steinbeis F, Scannell CM, et al. Brief research report: quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome. Front Cardiovasc Med. 2022;9:877416. doi: 10.3389/fcvm.2022.877416
  6. Guan W-J, Ni Z-y, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med. 2020;382(18): 1708–1720. doi: 10.1056/NEJMoa2002032
  7. Bryce C, Grimes Z, Pujadas E, et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. Mod Pathol. 2021;34(8):1456–1467. doi: 10.1038/s41379-021-00793-y
  8. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  9. Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. doi: 10.1016/S2352-3026(20)30216-7
  10. Giustino G, Pinney SP, Lala A, et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC focus seminar. J Am Coll Cardiol. 2020;76(17):2011–2023. doi: 10.1016/j.jacc.2020.08.059
  11. Wu Q, Zhou L, Sun X, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep. 2017;7(1):9110. doi: 10.1038/s41598-017-09536-z
  12. Zhang X-J, Qin J-J, Cheng X, et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 2020;32(2):176–187.e4. doi: 10.1016/j.cmet.2020.06.015
  13. Hermida N, Balligand J-L. Low-density lipoprotein-cholesterol-induced endothelial dysfunction and oxidative stress: the role of statins. Antioxid Redox Signal. 2014;20(8):1216–1237. doi: 10.1089/ars.2013.5537
  14. De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J. 2020;41(22):2083–2088. doi: 10.1093/eurheartj/ehaa409
  15. Garcia S, Albaghdadi MS, Meraj PM, et al. Reduction in ST-segment elevation cardiac catheterization laboratory activations in the United States during COVID-19 pandemic. J Am Coll Cardiol. 2020;75(22):2871–2872. doi: 10.1016/j.jacc.2020.04.011
  16. Xiang D, Xiang X, Zhang W, et al. Management and outcomes of patients with STEMI during the COVID-19 pandemic in China. J Am Coll Cardiol. 2020;76(11):1318–1324. doi: 10.1016/j.jacc.2020.06.039
  17. Ferreira E, Alves TS, Mourilhe-Rocha R, et al. Safety of interventional cardiology procedures in chronic coronary syndrome during the COVID-19 pandemic. Arq Bras Cardiol. 2020;115(4): 712–716. doi: 10.36660/abc.20200704
  18. Solomon MD, McNulty EJ, Rana JS, et al. The Covid-19 pandemic and the incidence of acute myocardial infarction. N Engl J Med. 2020;383(7):691–693. doi: 10.1056/NEJMc2015630
  19. Piccolo R, Bruzzese D, Mauro C, et al. Population Trends in rates of percutaneous coronary revascularization for acute coronary syndromes associated with the COVID-19 outbreak. Circulation. 2020;141(24):2035–2037. doi: 10.1161/CIRCULATIONAHA.120.047457
  20. Mafham MM, Spata E, Goldacre R, et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet. 2020;396(10248):381–389. doi: 10.1016/S0140-6736(20)31356-8
  21. Schiavone M, Gobbi C, Biondi-Zoccai G, et al. Acute coronary syndromes and Covid-19: exploring the uncertainties. J Clin Med. 2020;9(6):1683. doi: 10.3390/jcm9061683
  22. Pérez-González A, Araújo-Ameijeiras A, Alberto Fernández-Villar A, et al. Cohort COVID-19 of the Galicia Sur Health Research Institute Long COVID in hospitalized and non-hospitalized patients in a large cohort in Northwest Spain, a prospective cohort study. Sci Rep. 2022;12(1):3369. doi: 10.1038/s41598-022-07414-x
  23. Dennis A, Wamil M, Kapur S, et al. Multiorgan impairment in low-risk individuals with long COVID. BMJ. 2021;11(3):e048391. doi: 10.1136/bmjopen-2020-048391
  24. Kini A, Cao D, Nardin M, et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur Heart J Qual Care Clin Outcomes. 2021;7(5):438–446. doi: 10.1093/ehjqcco/qcab053
  25. Rivera-Izquierdo M, Láinez-Ramos-Bossini AJ, de Alba IG, et al. Long COVID 12 months after discharge: persistent symptoms in patients hospitalised due to COVID-19 and patients hospitalised due to other causes-a multicentre cohort study. BMC Med. 2022;20(1):92. doi: 10.1186/s12916-022-02292-6
  26. Ayoubkhani D, Khunti K, Nafilyan V, et al. Post-COVID syndrome in individuals admitted to hospital with COVID-19: retrospective cohort study. BMJ. 2021;372:n693. doi: 10.1136/bmj.n693
  27. Kotecha T, Knight DS, Razvi Y, et al. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur Heart J. 2021;42(19): 1866–1878. doi: 10.1093/eurheartj/ehab075
  28. Italia L, Ingallina G, Napolano A, et al. Subclinical myocardial dysfunction in patients recovered from COVID-19. Echocardiography. 2021;38(10):1778–1786. doi: 10.1111/echo.15215
  29. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. doi: 10.1038/s41586-021-03553-9
  30. Daugherty SE, Guo Y, Heath K, et al. Risk of clinical sequelae after the acute phase of SARS-CoV-2 infection: retrospective cohort study. BMJ. 2021;373:n1098. doi: 10.1136/bmj.n1098
  31. Zhou M, Wong C-K, Un K-C, et al. Cardiovascular sequalae in uncomplicated COVID-19 survivors. PLoS One. 2021;16(2):e0246732. doi: 10.1371/journal.pone.0246732
  32. Xiong Q, Xu M, Li J, et al. Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin Microbiol Infect. 2021;27(1):89–95. doi: 10.1016/j.cmi.2020.09.023
  33. Ingul CB, Grimsmo J, Mecinaj A, et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J Am Heart Assoc. 2022;11(3):e023473. doi: 10.1161/JAHA.121.023473
  34. Maestre-Muñiz MM, Arias Á, Mata-Vázquez E, et al. Long-term outcomes of patients with coronavirus disease 2019 at one year after hospital discharge. J Clin Med. 2021;10(13):2945. doi: 10.3390/jcm10132945
  35. Evans RA, McAuley H, Harrison EM, et al. Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir Med. 2021;9(11):1275–1287. doi: 10.1016/S2213-2600(21)00383-0
  36. Moody WE, Liu B, Mahmoud-Elsayed HM, et al. Persisting adverse ventricular remodeling in COVID-19 survivors: a longitudinal echocardiographic study. J Am Soc Echocardiogr. 2021;34(5): 562–566. doi: 10.1016/j.echo.2021.01.020
  37. Sonnweber T, Sahanic S, Pizzini A, et al. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J. 2021;57(4):2003481. doi: 10.1183/13993003.03481-2020
  38. Li X, Wang H, Zhao R, et al. Elevated extracellular volume fraction and reduced global longitudinal strains in participants recovered from COVID-19 without clinical cardiac findings. Radiology. 2021;299(2):e230–e240. doi: 10.1148/radiol.2021203998
  39. Shirokov NE, Yaroslavskaya EI, Krinochkin DV, Osokina NA. Hidden systolic dysfunction of the right ventricle in patients with increased pulmonary vascular resistance 3 months after COVID-19 pneumonia. Kardiologiia. 2022;62(3):16–20. (In Russ.). doi: 10.18087//cardio.2022.3.n1743
  40. Pelà G, Goldoni M, Cavalli C, et al. Long-term cardiac sequelae in patients referred into a diagnostic post-COVID-19 pathway: the different impacts on the right and left ventricles. Diagnostics. 2021;11(11):2059. doi: 10.3390/diagnostics11112059
  41. Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open. 2021;11(3):e048391. doi: 10.1136/bmjopen-2020-048391
  42. Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–958. doi: 10.1093/ehjci/jeaa178
  43. Kryukov EV, Savushkina OI, Malashenko MM, et al. Influence of complex medical rehabilitation on pulmonary function and quality of life in patients after COVID-19. Bulletin Physiology and Pathology of Respiration. 2020;(78):84–91. (In Russ.). doi: 10.36604/1998-5029-2020-78-84-91
  44. Haskiah F, Jbara R, Minha S, et al. The impact of COVID-19 pandemic on cardiac rehabilitation of patients following acute coronary syndrome. PLoS One. 2022;17(12):e0276106. doi: 10.1371/journal.pone.0276106
  45. Haimovich AD, Ravindra NG, Stoytchev S, et al. Development and validation of the quick COVID-19 severity index: A prognostic tool for early clinical decompensation. Ann Emerg Med. 2020;76(4):442–453. doi: 10.1016/j.annemergmed.2020.07.022
  46. Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;180(8):1081–1089. doi: 10.1001/jamainternmed.2020.2033
  47. Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ. 2020;370:m3339. doi: 10.1136/bmj.m3339
  48. Galloway JB, Norton S, Barker RD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: an observational cohort study. J Infect. 2020;81(2):282–288. doi: 10.1016/j.jinf.2020.05.064
  49. King JT Jr, Yoon JS, Rentsch CT, et al. Development and validation of a 30-day mortality index based on pre-existing medical administrative data from 13,323 COVID-19 patients: the Veterans Health Administration COVID-19 (VACO) Index. PLoS One. 2020;15(11):e0241825. doi: 10.1371/journal.pone.0241825
  50. Fox KAA, Eagle KA, Gore JM, et al. The global registry of acute coronary events, 1999 to 2009-GRACE. Heart. 2010;96(14): 1095–1101. doi: 10.1136/hrt.2009.190827
  51. Lip GYH, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest. 2010;137(2):263–272. doi: 10.1378/chest.09-1584
  52. Droppa M, Tschernow D, Müller KAL, et al. Evaluation of clinical risk factors to predict high on-treatment platelet reactivity and outcome in patients with stable coronary artery disease (PREDICT-STABLE). PLoS One. 2015;10(3):e0121620. doi: 10.1371/journal.pone.0121620
  53. Baber U, Mehran R, Giustino G, et al. Coronary thrombosis and major bleeding after PCI with drug-eluting stents risk scores from Paris. J Am Coll Cardiol. 2016;67(19):2224–2234. doi: 10.1016/j.jacc.2016.02.064
  54. Costa F, van Klaveren D, James S, et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: a pooled analysis of individual-patient datasets from clinical trials. Lancet. 2017;389(10073):1025–1034. doi: 10.1016/S0140-6736(17)30397-5
  55. Pisters R, Lane DA, Nieuwlaat R, et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010;138(5): 1093–1100. doi: 10.1378/chest.10-0134
  56. Zdanyte M, Martus P, Nestele J, et al. Risk assessment in COVID-19: Prognostic importance of cardiovascular parameters. Clin Cardiol. 2022;45(9):943–951. doi: 10.1002/clc.23883
  57. Rizvi ZA, Dalal R, Sadhu S, et al. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. Elife. 2022;11:e73522. doi: 10.7554/eLife.73522

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies