Development of a technique for analyzing the lengths of restriction fragments to assess the mefloquine resistance of plasmodium falciparum based on the identification of single-nucleotide polymorphisms (A958146T, A961013G, G961625T) of the PFMDR1 gene

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A method for identifying single nucleotide polymorphisms of the PfMDR1 gene (A958146T, A961013G, G961625T) based on the analysis of the lengths of restriction fragments using polymerase chain reaction technology with specific primers is presented. To identify the polymorphism A958146T (amino acid substitution N86Y), it was proposed to amplify a fragment of parasitic deoxyribonucleic acid with a length of 417 bp, including the 86th codon of the PfMDR1 gene, followed by treatment of the amplicon with ApoI endonuclease, the restriction site of which includes the sequence of the analyzed mutation. With the Plasmodium falciparum genotype unchanged, the isolated deoxyribonucleic acid site is divided into two fragments of size 239 and 179 bp. In the case of an altered genotype containing a single nucleotide missense mutation A > T, the original fragment 417 bp will be preserved. When designing the system to detect the amino acid substitution N1042D caused by the A961013G mutation, a pair of specific primers were selected that limit the 404 bp-long section of parasitic deoxyribonucleic acid. For restriction analysis, the most optimal was the use of AseI endonuclease, which in the case of an unchanged Plasmodium falciparum genotype divides the initial amplicon into 4 fragments (132, 116, 99 and 25 bp), and in the presence of A > G mutation — into 3 (248, 99, 25 bp). It was found that a fragment of the PfMDR1 gene, including the G961625T mutation leading to the amino acid substitution D1246Y, contains 1 site corresponding to the restriction site of endonuclease BglII. Therefore, in the case of the wild genotype of Plasmodium falciparum, the initial fragment of deoxyribonucleic acid is cut into 2 short sections (300 and 269 bp). With the D1246 mutation, the replacement of the nucleotide G > T leads to the disappearance of the restriction site, so only one source fragment (509 bp) will be recorded on the electrophoregram. Based on the analysis of the data obtained, criteria for evaluating the drug resistance of Plasmodium falciparum have been developed. The decrease in sensitivity to mefloquine and its derivatives of pathogens of tropical malaria can be evidenced by positive results obtained using the developed methods for detecting haplotypes A > T (N86Y (band 417 bp)), A > G (N1042D (bands 248, 99 and 25 bp)), G > T (D1246Y (509 bp)). The developed methods can be used to analyze the spread of drug-resistant tropical malaria.

Full Text

Restricted Access

About the authors

Artem R. Ariukov

Kirov Military Medical Academy

Author for correspondence.
Email: arukov.artem@yandex.ru
ORCID iD: 0000-0001-8774-5467
SPIN-code: 4073-6487
ResearcherId: IAO-0519-2023

graduate student

Russian Federation, Saint Petersburg

Alexey I. Solovev

Kirov Military Medical Academy

Email: solopiter@gmail.com
ORCID iD: 0000-0002-3731-1756
SPIN-code: 2502-8831

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Anna A. Krutikova

All-Russian Research Institute of Genetics and Animal Breeding

Email: anntim2575@mail.ru
ORCID iD: 0000-0003-2561-145X

candidate of biological sciences, senior researcher

Russian Federation, Saint Petersburg

Alexander N. Kovalenko

Kirov Military Medical Academy

Email: ank561@mail.ru
ORCID iD: 0000-0002-7553-0634
SPIN-code: 9131-6360

MD, Dr. Sci. (Med.), associate professor

Russian Federation, Saint Petersburg

Vladimir A. Kapatsyna

Clinical Infectious Hospital named after S.P. Botkin

Email: ingashi@mail.ru
ORCID iD: 0000-0002-8959-0873
SPIN-code: 6401-4611

infectious disease doctor

Russian Federation, Saint Petersburg

Vladimir A. Romanenko

Kirov Military Medical Academy

Email: Arukov.artem@yandex.ru
SPIN-code: 9855-9483

student

Russian Federation, Saint Petersburg

References

  1. Uskov AN, Soloviev AI, Kravtsov VYu, et al. Molecular-genetic mechanisms of plasmodium falciparum virulence and tropical malaria pathogenesis. Journal Infectology. 2018;10(3):23–29. (In Russ.). doi: 10.22625/2072-6732-2018-10-3-23-29
  2. Chou AC, Chevli R, Fitch CD. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry. 1980;19(8):1543–1549. doi: 10.1021/bi00549a600
  3. Beavogui AH, Diawara EY, Cherif MS, et al. Selection of PFCRT 76T and PFMDR1 86Y mutant Plasmodium falciparum after treatment of uncomplicated malaria with artesunate-amodiaquine in Republic of Guinea. J Parasitol. 2021;107(5):778–782. doi: 10.1645/19-199
  4. Bertaux L, Quang LH, Sinou V, et al. New PfATP6 mutations found in Plasmodium falciparum isolates from Vietnam. Antimicrob Agents Chemother. 2009;53(10):4570. doi: 10.1128/AAC.00684-09
  5. Mundwiler-Pachlatko E, Beck H-P. Maurer’s clefts, the enigma of Plasmodium falciparum. PNAS. 2013;110(50):19987–19994. doi: 10.1073/pnas.1309247110
  6. Miley GP, Pou S, Winter R, et al. ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria. Antimicrob Agents Chemother. 2015;59(9):5555–5560. doi: 10.1128/AAC.01183-15
  7. Macintyre F, Ramachandruni H, Burrows JN, et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J. 2018;17:402. doi: 10.1186/s12936-018-2549-1
  8. Smilkstein MJ, Pou S, Krollenbrock A, et al. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar J. 2019;18(1):291. doi: 10.1186/s12936-019-2921-9
  9. Reed MB, Saliba KJ, Caruana SR, et al. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403(6772):906–909. doi: 10.1038/35002615
  10. Issa I, Lamine MM, Hubert V, et al. Prevalence of mutations in the Pfdhfr, Pfdhps, and PfMDR1 genes of malarial parasites isolated from symptomatic patients in Dogondoutchi, Niger. Trop Med Infect Dis. 2022;7(8):155. doi: 10.3390/tropicalmed7080155
  11. Veiga MI, Dhingra SK, Henrichet PP, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7(1):11553. doi: 10.1038/ncomms11553
  12. Rahmasari FV, Asih PBS, Dewayanti FK, et al. Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malaria J. 2022;21(1):354. doi: 10.1186/s12936-022-04385-2
  13. Adhin MR, Labadie-Bracho M, Bretas G. Molecular surveillance as monitoring tool for drug-resistant Plasmodium falciparum in Suriname. Am J Trop Med Hyg. 2013;89(2):311–316. doi: 10.4269/ajtmh.12-0695
  14. Veiga MI, Ferreira PE, Bjorkman A, Gil JP. Multiplex PCR-RFLP methods for pfcrt, PfMDR1 and pfdhfr mutations in Plasmodium falciparum. Mol Cell Probes. 2006;20(2):100–104. doi: 10.1016/j.mcp.2005.10.003
  15. Murmu LK, Sahu AA, Barik TK. Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis. 2021;45:869–876. doi: 10.1007/s12639-020-01333-2
  16. Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol: chloroform. CSH Protocols. 2006;2006(1). doi: 10.1101/PDB.Prot4455
  17. Cox-Singh J, Singh B, Alias A, et al. Assessment of the association between three PfMDR1 point mutations and chloroquine resistance in vitro of Malaysian Plasmodium falciparum isolates. Trans R Soc Trop Med Hyg. 1995;89(4):436–437. doi: 10.1016/0035-9203(95)90045-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Restriction points of ApoI amplicon 417 bp

Download (60KB)
3. Fig. 2. Amplified fragment of the PfMDR1 gene. The primers are highlighted in italics, the dot mutation in the 86th codon is in bold, the fragment containing the ApoI restriction site is underlined

Download (316KB)
4. Fig. 3. Fragment of the PfMDR1 gene site with the 86th codon and the ApoI restriction site: 1 — the restriction point when the ApoI endonuclease recognizes the restriction site as part of the PfMDR1 gene; 2 — the 86th codon of the PfMDR1 gene encoding asparagine (in this case wild type) or threonine in the polypeptide of the Plasmodium falciparum multiple resistance protein; 3 — the first nucleotide of the 86th codon (in this case, adenine), which determines the polymorphism of the PfMDR1 gene on the basis of drug resistance to mefloquine; 4 — the restriction site of ApoI endonuclease

Download (28KB)
5. Fig. 4. Electrophoregram of the results of PCR-RFLP mutation N86Y in the PfMDR1 gene using ApoI: 1 — length marker; 2, 3 — negative control; 4 — 86Y; 5, 6 — 86Y/N; 7 — 86N

Download (163KB)
6. Fig. 5. Restriction points of AseI amplicon 404 bp

Download (110KB)
7. Fig. 6. Amplified fragment of the PfMDR1 gene. Primers are highlighted in italics, restriction sites are in bold, DNA fragment incision points (restriction points) are indicated with arrows, and codon 1042 is underlined

Download (317KB)
8. Fig. 7. Fragment of a section of the PfMDR1 gene with the 1042nd codon and the AseI restriction site: 1 — the restriction point when the AseI endonuclease recognizes the restriction site as part of the PfMDR1 gene; 2 — the 1042 codon of the PfMDR1 gene encoding asparagine (in this case wild type) or aspartic acid in the Plasmodium falciparum multiple resistance polypeptide; 3 — the first nucleotide of codon 1042 (in this case adenine), which determines the polymorphism of the PfMDR1 gene on the basis of drug resistance to mefloquine; 4 — AseI endonuclease restriction site

Download (25KB)
9. Fig. 8. Electrophoregram of PCR-RFLP results for detecting the N1042D mutation in the PfMDR1 gene using AseI: 1.5 — length marker; 2 — 1042D; 3 — 1042N/D; 4 — N1042

Download (97KB)
10. Fig. 9. Restriction points of BglII amplicon 509 bp

Download (99KB)
11. Fig. 10. Amplified fragment of the PfMDR1 gene. Primers are highlighted in italics, and codon 1246 is underlined

Download (413KB)
12. Fig. 11. Fragment of the PfMDR1 gene site with the 1246th codon and the BglII restriction site: 1 — the restriction point when the BglII endonuclease recognizes the restriction site as part of the PfMDR1 gene; 2 — the 1246th codon of the PfMDR1 gene encoding aspartic acid (in this case wild type) or tyrosine in the PLASMODIUM multiple resistance protein polypeptide falciparum; 3 — the first nucleotide of the 1246th codon (in this case, adenine), which determines the variant of the PfMDR1 gene on the basis of drug resistance to mefloquine; 4 — the site of restriction of endonuclease BglII

Download (26KB)
13. Fig. 12. Electrophoregram of PCR-RFLP results for detecting the D1246Y mutation in the PfMDR1 gene using AseI: 1 — length marker; 2 — 1246Y; 3 —1246 D; 4 —1246.D/Y

Download (150KB)
14. Fig. 13. Schematic structure of PCR-RFLP cleavage of fragment 86 by ApoI restrictase: 86Y — tyrosine (absence of restriction, single band 417 bp, sign of Plasmodium falciparum resistance); 86N — asparagine (restriction, bands 239 and 179 bp, sign of absence of Plasmodium falciparum resistance); 86Y/N — tyrosine/asparagine (bands 417, 239 and 179 bp, persistence of wild and drug-resistant strains of Plasmodium falciparum

Download (67KB)
15. Fig. 14. Schematic structure of electrophoretic dilution of the amplified fragment using AseI: 1 — PfMDR1 N1042 — AAT (asn), wild (unchanged) type genotype, a sign of Plasmodium falciparum drug sensitivity; 2 — PfMDR1 1042D — GAT (asp), a genotype containing the N1042D mutation, a sign of Plasmodium falciparum drug resistance; 3 — persistence of wild and drug-resistant strains of Plasmodium falciparum

Download (173KB)
16. Fig. 15. Schematic structure of electrophoretic dilution of the amplified fragment using BglII: 1 — PfMDR1 D1246 — GAT (asp) — wild (unchanged) type genotype, a sign of Plasmodium falciparum drug sensitivity; 2 — PfMDR1 1246Y — TAT (dash), a genotype containing the D1246Y mutation, a sign of Plasmodium falciparum drug resistance; 3 — persistence of wild and drug-resistant strains of Plasmodium falciparum

Download (89KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies