Development of a technique for analyzing the lengths of restriction fragments to assess the mefloquine resistance of plasmodium falciparum based on the identification of single-nucleotide polymorphisms (A958146T, A961013G, G961625T) of the PFMDR1 gene

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

A method for identifying single nucleotide polymorphisms of the PfMDR1 gene (A958146T, A961013G, G961625T) based on the analysis of the lengths of restriction fragments using polymerase chain reaction technology with specific primers is presented. To identify the polymorphism A958146T (amino acid substitution N86Y), it was proposed to amplify a fragment of parasitic deoxyribonucleic acid with a length of 417 bp, including the 86th codon of the PfMDR1 gene, followed by treatment of the amplicon with ApoI endonuclease, the restriction site of which includes the sequence of the analyzed mutation. With the Plasmodium falciparum genotype unchanged, the isolated deoxyribonucleic acid site is divided into two fragments of size 239 and 179 bp. In the case of an altered genotype containing a single nucleotide missense mutation A > T, the original fragment 417 bp will be preserved. When designing the system to detect the amino acid substitution N1042D caused by the A961013G mutation, a pair of specific primers were selected that limit the 404 bp-long section of parasitic deoxyribonucleic acid. For restriction analysis, the most optimal was the use of AseI endonuclease, which in the case of an unchanged Plasmodium falciparum genotype divides the initial amplicon into 4 fragments (132, 116, 99 and 25 bp), and in the presence of A > G mutation — into 3 (248, 99, 25 bp). It was found that a fragment of the PfMDR1 gene, including the G961625T mutation leading to the amino acid substitution D1246Y, contains 1 site corresponding to the restriction site of endonuclease BglII. Therefore, in the case of the wild genotype of Plasmodium falciparum, the initial fragment of deoxyribonucleic acid is cut into 2 short sections (300 and 269 bp). With the D1246 mutation, the replacement of the nucleotide G > T leads to the disappearance of the restriction site, so only one source fragment (509 bp) will be recorded on the electrophoregram. Based on the analysis of the data obtained, criteria for evaluating the drug resistance of Plasmodium falciparum have been developed. The decrease in sensitivity to mefloquine and its derivatives of pathogens of tropical malaria can be evidenced by positive results obtained using the developed methods for detecting haplotypes A > T (N86Y (band 417 bp)), A > G (N1042D (bands 248, 99 and 25 bp)), G > T (D1246Y (509 bp)). The developed methods can be used to analyze the spread of drug-resistant tropical malaria.

全文:

受限制的访问

作者简介

Artem Ariukov

Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: arukov.artem@yandex.ru
ORCID iD: 0000-0001-8774-5467
SPIN 代码: 4073-6487
Researcher ID: IAO-0519-2023

graduate student

俄罗斯联邦, Saint Petersburg

Alexey Solovev

Kirov Military Medical Academy

Email: solopiter@gmail.com
ORCID iD: 0000-0002-3731-1756
SPIN 代码: 2502-8831

MD, Dr. Sci. (Med.), professor

俄罗斯联邦, Saint Petersburg

Anna Krutikova

All-Russian Research Institute of Genetics and Animal Breeding

Email: anntim2575@mail.ru
ORCID iD: 0000-0003-2561-145X

candidate of biological sciences, senior researcher

俄罗斯联邦, Saint Petersburg

Alexander Kovalenko

Kirov Military Medical Academy

Email: ank561@mail.ru
ORCID iD: 0000-0002-7553-0634
SPIN 代码: 9131-6360

MD, Dr. Sci. (Med.), associate professor

俄罗斯联邦, Saint Petersburg

Vladimir Kapatsyna

Clinical Infectious Hospital named after S.P. Botkin

Email: ingashi@mail.ru
ORCID iD: 0000-0002-8959-0873
SPIN 代码: 6401-4611

infectious disease doctor

俄罗斯联邦, Saint Petersburg

Vladimir Romanenko

Kirov Military Medical Academy

Email: Arukov.artem@yandex.ru
SPIN 代码: 9855-9483

student

俄罗斯联邦, Saint Petersburg

参考

  1. Uskov AN, Soloviev AI, Kravtsov VYu, et al. Molecular-genetic mechanisms of plasmodium falciparum virulence and tropical malaria pathogenesis. Journal Infectology. 2018;10(3):23–29. (In Russ.). doi: 10.22625/2072-6732-2018-10-3-23-29
  2. Chou AC, Chevli R, Fitch CD. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry. 1980;19(8):1543–1549. doi: 10.1021/bi00549a600
  3. Beavogui AH, Diawara EY, Cherif MS, et al. Selection of PFCRT 76T and PFMDR1 86Y mutant Plasmodium falciparum after treatment of uncomplicated malaria with artesunate-amodiaquine in Republic of Guinea. J Parasitol. 2021;107(5):778–782. doi: 10.1645/19-199
  4. Bertaux L, Quang LH, Sinou V, et al. New PfATP6 mutations found in Plasmodium falciparum isolates from Vietnam. Antimicrob Agents Chemother. 2009;53(10):4570. doi: 10.1128/AAC.00684-09
  5. Mundwiler-Pachlatko E, Beck H-P. Maurer’s clefts, the enigma of Plasmodium falciparum. PNAS. 2013;110(50):19987–19994. doi: 10.1073/pnas.1309247110
  6. Miley GP, Pou S, Winter R, et al. ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria. Antimicrob Agents Chemother. 2015;59(9):5555–5560. doi: 10.1128/AAC.01183-15
  7. Macintyre F, Ramachandruni H, Burrows JN, et al. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J. 2018;17:402. doi: 10.1186/s12936-018-2549-1
  8. Smilkstein MJ, Pou S, Krollenbrock A, et al. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar J. 2019;18(1):291. doi: 10.1186/s12936-019-2921-9
  9. Reed MB, Saliba KJ, Caruana SR, et al. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000;403(6772):906–909. doi: 10.1038/35002615
  10. Issa I, Lamine MM, Hubert V, et al. Prevalence of mutations in the Pfdhfr, Pfdhps, and PfMDR1 genes of malarial parasites isolated from symptomatic patients in Dogondoutchi, Niger. Trop Med Infect Dis. 2022;7(8):155. doi: 10.3390/tropicalmed7080155
  11. Veiga MI, Dhingra SK, Henrichet PP, et al. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun. 2016;7(1):11553. doi: 10.1038/ncomms11553
  12. Rahmasari FV, Asih PBS, Dewayanti FK, et al. Drug resistance of Plasmodium falciparum and Plasmodium vivax isolates in Indonesia. Malaria J. 2022;21(1):354. doi: 10.1186/s12936-022-04385-2
  13. Adhin MR, Labadie-Bracho M, Bretas G. Molecular surveillance as monitoring tool for drug-resistant Plasmodium falciparum in Suriname. Am J Trop Med Hyg. 2013;89(2):311–316. doi: 10.4269/ajtmh.12-0695
  14. Veiga MI, Ferreira PE, Bjorkman A, Gil JP. Multiplex PCR-RFLP methods for pfcrt, PfMDR1 and pfdhfr mutations in Plasmodium falciparum. Mol Cell Probes. 2006;20(2):100–104. doi: 10.1016/j.mcp.2005.10.003
  15. Murmu LK, Sahu AA, Barik TK. Diagnosing the drug resistance signature in Plasmodium falciparum: a review from contemporary methods to novel approaches. J Parasit Dis. 2021;45:869–876. doi: 10.1007/s12639-020-01333-2
  16. Sambrook J, Russell DW. Purification of nucleic acids by extraction with phenol: chloroform. CSH Protocols. 2006;2006(1). doi: 10.1101/PDB.Prot4455
  17. Cox-Singh J, Singh B, Alias A, et al. Assessment of the association between three PfMDR1 point mutations and chloroquine resistance in vitro of Malaysian Plasmodium falciparum isolates. Trans R Soc Trop Med Hyg. 1995;89(4):436–437. doi: 10.1016/0035-9203(95)90045-4

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


##common.cookie##