Features of the course of traumatic shock when using respiratory mixtures with a high content of inert gases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study evaluated the efficiency of using gas mixtures with increased concentrations of inert gases on a hemorrhagic shock model in experimental animals. Massive blood loss is considered a trigger mechanism of severe pathophysiological reactions (impaired peripheral perfusion, acidosis, hemostasis system dysfunction, and multiple organ failure). Inert gases (helium, argon, and xenon) attract attention as potentially useful in various pathological conditions. The study was conducted on 15 same-sex pigs of the same breed, weighing 40–50 kg, randomized into three groups with five each: control group, inhalation of 100% oxygen; “agohhep” group, inhalation of the “Aroxxen” gas mixture: 35% argon, 58% oxygen, 0.2% xenon, and nitrogen as the rest of the volume; and “agohhep-krypto” group, inhalation of the gas mixture “Aroxxen-krypto”: 35% argon, 40% oxygen, 10% krypton, and nitrogen as the rest of the volume. Dynamic monitoring of vital signs and sampling of materials were conducted before blood loss, with blood loss of 20% and 45% of the volume of the circulating blood 60, 120, and 180 min after blood loss. The survival rate of animals and respiratory and circulatory states were evaluated by clinical and laboratory indicators. With blood loss of 45% of the circulating blood volume, no statistically significant differences in mortality were found between the groups. All animals survived for 180 min in the post-hemorrhagic period. In the aggohep-krypto group, average blood pressure values after blood loss and throughout the follow-up period were significantly higher than those in the control and aggohep groups (p < 0.05). During shock simulation as a result of blood loss, base deficiency gradually worsened in all groups. However, starting from the second hour of observation, base deficiency began to be compensated in the control and aggohep-krypto groups and the aggohep group, it continued to increase significantly (p < 0.01). During the follow-up after blood loss, the level of lactatemia significantly increased in the aggohep group (by 10 times at the end of the follow-up), which is significant different from those in the control and aggohep-krypto groups (p < 0.01). Thus, compared with the use of Arroxen gas, the use of Arroxen-krypto gas of the proposed composition in acute massive blood loss makes it possible to achieve a less pronounced attrition of the acid–base balance in experimental animals.

Full Text

Restricted Access

About the authors

Artem M. Nosov

Kirov Military Medical Academy

Author for correspondence.
Email: artem_svu06@mail.ru
ORCID iD: 0000-0001-9977-6543
SPIN-code: 7386-3225
Scopus Author ID: 57205363253
ResearcherId: AAY-8133-2021

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vasiliy A. Petrov

Research Institute of geroprotective Technologies

Email: vas3188@yandex.ru
ORCID iD: 0000-0001-8523-8031

kandidate of technical scienses, associate professor

Russian Federation, Saint Petersburg

Konstantin N. Demchenko

Kirov Military Medical Academy

Email: phantom964@mail.ru
ORCID iD: 0000-0001-5437-1163
SPIN-code: 7549-2959
ResearcherId: ABA-2384-2021

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Nikolay A. Morgunov

Research Institute of geroprotective Technologies

Email: instaun@geropro.ru

head of the research department of therapeutic methods

Russian Federation, Saint Petersburg

Roman E. Lakhin

Kirov Military Medical Academy

Email: doctor-lahin@yandex.ru
ORCID iD: 0000-0001-6819-9691
SPIN-code: 7261-9985
Scopus Author ID: 6506241830
ResearcherId: S-6125-2016

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Natalya A. Zhirnova

Kirov Military Medical Academy

Email: ji65@yandex.ru
ORCID iD: 0000-0002-9948-6260
SPIN-code: 8308-2139
ResearcherId: I-4804-2016

kandidate of biologic scienses

Russian Federation, Saint Petersburg

Stanislav P. Kolvzan

Kirov Military Medical Academy

Email: stanislas_1989@mail.ru
ORCID iD: 0009-0005-4850-8545

residency student

Russian Federation, Saint Petersburg

References

  1. Trishkin DV, Kryukov EV, Chuprina AP, et al. Metodicheskie rekomendatsii po lecheniyu boevoi khirurgicheskoi travmy. Moscow: Main Military Medical Directorate of the Ministry of Defense of the Russian Federation; 2022. 372 р. (In Russ.).
  2. Rossaint R, Afshari A, Bouillon B, et al. The European guideline on management of major bleeding and coagulopathy following trauma: sixth edition. Crit Care. 2023;27(1):80. doi: 10.1186/s13054-023-04327-7
  3. Convertino VA, Cardin S. Advanced medical monitoring for the battlefield: A review on clinical applicability of compensatory reserve measurements for early and accurate hemorrhage detection. J Trauma Acute Care Surg. 2022;93(Suppl 1):S147–S154. doi: 10.1097/TA.0000000000003595
  4. Bonanno FG. Management of Hemorrhagic Shock: Physiology Approach, Timing and Strategies. J Clin Med. 2022;12(1):260. doi: 10.3390/JCM12010260
  5. Savary G, Lidouren F, Rambaud J, et al. Argon attenuates multiorgan failure following experimental aortic cross–clamping. Br J Clin Pharmacol. 2018;84(6):1170–1179. doi: 10.1111/BCP.13535
  6. Gardner AJ, Menon DK. Moving to human trials for argon neuroprotection in neurological injury: a narrative review. Br J Anaesth. 2018;20(3):453–468. doi: 10.1016/J.BJA.2017.10.017
  7. Maze M, Laitio T. Neuroprotective Properties of Xenon. Mol Neurobiol. 2020;57(1):118–124. doi: 10.1007/S12035-019-01761-Z/METRICS
  8. Maze M. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review. Can J Anesth. 2015;63(2):212–226. doi: 10.1007/S12630-015-0507-8
  9. Liang M, Ahmad F, Dickinson R. Neuroprotection by the noble gases argon and xenon as treatments for acquired brain injury: a preclinical systematic review and meta-analysis. Br J Anaesth. 2022;129(2):200–218. doi: 10.1016/J.BJA.2022.04.016
  10. De Deken J, Rex S, Monbaliu D, et al. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit Care Med. 2016;44(9):886–896. doi: 10.1097/CCM.0000000000001717
  11. Ryang YM, Fahlenkamp AV, Rossaint R, et al. Neuroprotective effects of argon in an in vivo model of transient middle cerebral artery occlusion in rats. Crit Care Med. 2011;39(6):1448–1453. doi: 10.1097/CCM.0B013E31821209BE
  12. Höllig A, Weinandy A, Liu J, et al. Beneficial Properties of Argon After Experimental Subarachnoid Hemorrhage: Early Treatment Reduces Mortality and Influences Hippocampal Protein Expression. Crit Care Med. 2016;44(7):e520–e529. doi: 10.1097/CCM.0000000000001561
  13. Brücken A, Cizen A, Fera C, et al. Argon reduces neurohistopathological damage and preserves functional recovery after cardiac arrest in rats. Br J Anaesth. 2013;110(Supple 1): i106–i112. doi: 10.1093/BJA/AES509
  14. Ristagno G, Fumagalli F, Russo I, et al. Postresuscitation treatment with argon improves early neurological recovery in a porcine model of cardiac arrest. Shock. 2014;41(1):72–78. doi: 10.1097/SHK.0000000000000049
  15. Zuercher P, Springe D, Grandgirard D, et al. A randomized trial of the effects of the noble gases helium and argon on neuroprotection in a rodent cardiac arrest model. BMC Neurol. 2016;16:43. doi: 10.1186/S12883-016-0565-8
  16. Broad KD, Fierens I, Fleiss B, et al. Inhaled 45–50 % argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis. 2016;87:29–38. doi: 10.1016/J.NBD.2015.12.001
  17. Zhao H, Mitchell S, Ciechanowicz S, et al. Argon protects against hypoxic-ischemic brain injury in neonatal rats through activation of nuclear factor (erythroid-derived 2)-like 2. Oncotarget. 2016;7(18):25640–25651. doi: 10.18632/ONCOTARGET.8241
  18. Zhao H, Mitchell S, Koumpa S, et al. Heme Oxygenase-1 Mediates Neuroprotection Conferred by Argon in Combination with Hypothermia in Neonatal Hypoxia – Ischemia Brain Injury. Anesthesiology. 2016;125(1):180–192. doi: 10.1097/ALN.0000000000001128
  19. Pagel PS, Krolikowski JG, Shim YH, et al. Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg. 2007;105(3):562–569. doi: 10.1213/01.ANE.0000278083.31991.36
  20. Irani Y, Pype JL, Martin AR, et al. Noble gas (argon and xenon) – saturated cold storage solutions reduce ischemia – reperfusion injury in a rat model of renal transplantation. Nephron Extra. 2011;1(1): 272–282. doi: 10.1159/000335197

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oxygen and gas “Arroxen” supply system from the bag Ambu

Download (415KB)
3. Fig. 2. Gas “Arroxen-krypto” supply through an automatic gas mixer

Download (513KB)
4. Fig. 3. Dynamics of mean blood pressure in groups with blood loss

Download (213KB)
5. Fig. 4. Dynamics of bases and BE in groups with blood loss

Download (187KB)
6. Fig. 5. Dynamics of HCO3– levels in groups with blood loss

Download (199KB)
7. Fig. 6. Dynamics of pH levels in groups with blood loss

Download (182KB)
8. Fig. 7. Dynamics of lactate levels in groups with blood loss

Download (174KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies