Possibilities of interval hypoxia in the treatment of patients with chronic obstructive pulmonary disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study evaluated the effectiveness of interval hypoxia in patients with chronic obstructive pulmonary disease receiving basic therapy. The study employed double-blind randomization with placebo control in two parallel groups of patients with chronic obstructive pulmonary disease. Course interval hypoxic therapy (10 sessions) and screening laboratory and instrumental evaluation of its effectiveness were conducted initially and before discharge of the patient who received treatment, which included stress hypoxic-stress testing, computer spirography, general and biochemical blood tests. The study involved 22 patients with grade 2–3 chronic obstructive pulmonary disease in the phase of drug control, who had similar cardiovascular comorbid backgrounds and were randomly divided into equal groups. Ten sessions of interval hypoxic therapy in the main study group significantly reduced laboratory markers of inflammation, promote high-speed ventilation, and increased desaturation–reoxygenation indicators in patients with chronic obstructive pulmonary disease in comparison with the control group. During hypoxic training, an increase in the functional capabilities of the respiratory system indicated the probable sanogenic effects of hypoxia on the elasticity, extensibility, and resistance of the bronchopulmonary continuum, which can positively affect gas exchange by improving the diffusion–perfusion capabilities of the lungs. In general, the results correspond to modern concepts about the relationship between hypoxia and inflammation. The results can be used as a reference for the development of a promising approach, in addition to basic therapy, to prevent exacerbations of chronic obstructive pulmonary disease.

Full Text

Restricted Access

About the authors

Elena S. Bulka

Kirov Military Medical Academy

Email: elena.l-saburova@yandex.ru
ORCID iD: 0000-0001-9782-4599
SPIN-code: 9209-7789

residency student

Russian Federation, Saint Petersburg

Vladimir V. Salukhov

Kirov Military Medical Academy

Email: vlasaluk@yandex.ru
ORCID iD: 0000-0003-1851-0941
SPIN-code: 4531-6011

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Denis V. Kovlen

Kirov Military Medical Academy

Email: denis.kovlen@mail.ru
ORCID iD: 0000-0001-6773-9713
SPIN-code: 6002-2766

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Mikhail A. Kharitonov

Kirov Military Medical Academy

Email: micjul11@yandex.ru
ORCID iD: 0000-0002-6521-7986
SPIN-code: 7678-2278
Scopus Author ID: 57521284600
ResearcherId: H-6056-2015

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Kirill A. Bulka

Kirov Military Medical Academy

Author for correspondence.
Email: visoret@list.ru
ORCID iD: 0000-0002-8871-0335
SPIN-code: 2831-2165
ResearcherId: HPB-8253-2023

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vitalij P. Sereda

Kirov Military Medical Academy

Email: visoret@list.ru
ORCID iD: 0000-0002-7958-7451
SPIN-code: 9907-2511
Scopus Author ID: 57205787473

MD, Dr. Sci. (Med.), docent

Russian Federation, Saint Petersburg

References

  1. Belevskii AS, Vizel’ AA, Zyryanov SK, et al. Khronicheskaya obstruktivnaya bolezn’ legkikh: problemy segodnyashnego dnya. Prakticheskaya pul’monologiya. 2015;(3):18–23. (In Russ.).
  2. Cherniak AV, Savushkina OI, Kryukov EV. Functional diagnostics of the respiratory system in chronic obstructive pulmonary disease. Medical alphabet. 2021;(28):10–15. (In Russ.). doi: 10.33667/2078-5631-2021-28-10-15
  3. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease study 2010. Lancet. 2012;380(9859):2163–2196. doi: 10.1016/S0140-6736(12)61729-2
  4. Zaitsev AA, Kryukov EV. Exacerbation of chronic obstructive pulmonary disease: epidemiology, diagnosis, antibiotic regimens. Prakticheskaya pul’monologiya. 2017;(4):58–62. (In Russ.).
  5. Minakata Y, Sugiura H, Yamagata T, et al. Prevalence of COPD in primary care clinics: correlation with nonrespiratory diseases. Ann Intern Med. 2008;47(2):77–82. doi: 10.2169/internalmedicine.47.0489
  6. Zeng Q, Jiang S. Update in diagnosis and therapy of coexistent chronic obstructive pulmonary disease and chronic heart failure. J Thorac Dis. 2012;4(3):310–315. doi: 10.3978/j.issn.2072-1439.2012.01.09
  7. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3:e442. doi: 10.1371/journal.pmed.0030442
  8. Zaitsev AA, Kryukov YeV. Modes of antimicrobial therapy and prevention of exacerbations of chronic bronchitis/chronic obstructive pulmonary disease. Therapy. 2016;(1):23–29. (In Russ.).
  9. Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227–2242. doi: 10.1016/S0140-6736(22)00470-6
  10. Ratcliffe PJ. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol. 2013;591(8):2027–2042. doi: 10.1113/jphysiol.2013.251470
  11. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi: 10.1016/j.cell.2012.01.021
  12. Titova ON, Kuzubova ON, Lebedeva ES, et al. Anti-inflammatory and regenerative effects of hypoxic signaling inhibition in a model of COPD. Pulmonologiya. 2018;28(2):169–176. (In Russ.). doi: 10.18093/0869-0189-2018-28-2-169-176
  13. Hoenderdos K, Lodge KM, Hirs RA, et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax. 2016;71(11):1030–1038. doi: 10.1136/thoraxjnl-2015-207604
  14. Sirotinin NN. Sravnitel’naya fiziologiya akklimatizatsii k vysokogornomu klimatu. Kyiv; 1963. 610 p. (In Russ.).
  15. Novozhilov AE. Dykhanie po Buteiko. Praktika i teoriya. Saint Petersburg; 2016. 111 p. (In Russ.).
  16. Abdullova NV, Aldarova SA, Shcherbinina NP. Efficiency of respiratory gymnastics of shooter in the pandemic of coronavirus. International Journal of Humanities and Natural Sciences. 2021;(9): 6–8. (In Russ.). doi: 10.24412/2500-1000-2021-9-2-6-8
  17. Patent RUS № 2123865/27.12.98. Frolov VF. Sposob trenirovki dykhatel’noi sistemy. (In Russ.).
  18. Bobyleva OV, Glazachev OS. Changes in autonomic response and resistance to acute graded hypoxia during intermittent hypoxic training. Human Physiology. 2007;33(2):81–89. (In Russ.).
  19. Zagajnaya EE, Shchekochikhin DYu, Kopylov FYu, et al. Interval hypoxic training in cardiology practice. Russian Journal of Cardiology and Cardiovascular Surgery. 2014;7(6):28–34. (In Russ.).
  20. Zaletova TS. Interval hypoxic therapy in cardiology and dietetics. Medicine. Sociology. Philosophy. Applied research. 2022;(4):32–34. (In Russ.).
  21. Aisanov ZR, Kameneva MYu, Chernyak AV, et al. Spirometriya. Metodicheskoe rukovodstvo. Moscow; 2021. 62 p. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparative dynamics of FEV1 and Gensler index in both groups: * differences in OG before and after treatment; # differences between the treatment group and the control group, p < 0.05

Download (280KB)
3. Fig. 2. Comparative dynamics of desaturation and reoxygenation time and hypoxic index in both groups. * differences in OG before and after treatment; # — differences between the treatment group and the control group, p < 0.05

Download (352KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies