New approaches to the selection of genetic markers associated with multifactorial phenotypic traits

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


Modern approaches to searching for associations between the studied phenotype and structural variations of the human genome are analyzed. Most complex phenotypic traits, including diseases, do not follow the laws of Mendelian inheritance, but have a multi-factor nature, that is, a significant contribution to their development is made by the genetic component in combination with the influence of environmental factors. In General, there are several approaches to the design of a limited set of polymorphic markers for point genotyping. Selection of individual molecular genetic markers is carried out based on either their statistically significant Association with the studied multivariate feature, or their functional significance for the implementation of this feature. The «candidate gene» approach allows you to focus on one or more polymorphic variants in the region of a gene (allelic variant), the product of which is likely involved in the development of a disease or trait. The cheaper procedure for full-genome screening using ultra-high-density microchips has made available another approach for searching for genetic predispositions - full - genome Association search. We believe that the unification of both approaches into a single algorithm for the choice of molecular genetic markers to conduct point genotyping will allow for both markers selected based on a priori assumptions about the functional significance of candidate genes, and Association with the studied trait on the basis of genome-wide associations search. This approach will optimize the diagnostic efficiency of the created test suite.

Full Text

Restricted Access

References

  1. Баранов, В.С. Генетический паспорт - основа индивидуальной и предиктивной медицины / В.С. Баранов. - СПб.: Изд-во Н-Л, 2009. - 528 с.
  2. Гинтер, Е.К. Наследственные болезни: национальное руководство: краткое издание / Е.К. Гинтер, В.П. Пузырев. - М.: ГЭОТАР-Медиа, 2017. - 464 с.
  3. Горбунова, В.Н. Медицинская генетика: учебник для студентов мед. вузов и слушателей последипломного образования / В.Н. Горбунова. - СПб., 2012. - 357 с.
  4. Иванов, В.И. Геномика - медицине / В.И. Иванов. - М.: Академкнига, 2005. - 392 с.
  5. Лебедев, А.А. Превентивная медицина - медицина XXI века / А.А. Лебедев, М.В. Гончарова // Нац. проекты. - 2008. - № 12 (31). - С. 40-43.
  6. Низамутдинов, И.И. Критерии отбора генетических маркеров для анализа предрасположенности к многофакторным фенотипическим особенностям / И.И. Низамутдинов [и др.] // Вестн. РГМУ. - 2016. - № 6. - С. 25-32.
  7. Ньюсбаум, Р.Л. Медицинская генетика: учебное пособие. Пер. с англ. А.Ш. Латыпова / Р.Л. Ньюсбаум, Р.Р. Мак-Иннес, Х.Ф. Виллард. - М.: ГЭОТАР-Медиа, 2010. - 624 с.
  8. Пузырев, В.П. Генетические основы коморбидности у человека / В.П. Пузырев // Генетика. - 2015. - № 51 (4). - С. 491-502.
  9. Пузырев, В.П. Патологическая анатомия генома человека / В.П. Пузырев, В.А. Степанов. - Новосибирск: Наука. Сиб. предприятие РАН. - 1997. - 224 с.
  10. Ребриков, Д.В. NGS: высокопроизводительное секвенирование / Д.В. Ребриков [и др.]. - М.: БИНОМ., 2015. - 232 с.
  11. Border, R. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples / R. Border [et al.] // Am. J. Psychiatry. - 2019. - № 176 (5). - P. 376-387. ВЕСТНИК РОССИЙСКОЙ ВОЕННО-МЕДИЦИНСКОЙ АКАДЕМИИ 2 (70) - 2020
  12. Boyle, E.A. An Expanded View of Complex Traits: From Polygenic to Omnigenic / E.A. Boyle [et al.] // Cell. - 2017. - № 169 (7). - P. 1177-1186.
  13. Brookes, A.J. The essence of SNPs / A.J. Brookes // Gene. - 1999. - № 234. - P. 177-186.
  14. Burton, P.R Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls / P.R. Burton [et al.] // Nature. - 2007. - № 447 (7145). - P. 661-678.
  15. Duncan, L.E. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete / L.E. Duncan, M. Ostacher, J. Ballon // Neuropsychopharmacology. - 2019. - Р. 1-6.
  16. Fridkis-Hareli, M. Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases / M. Fridkis-Hareli [et al.] // Blood. - 2011. - № 118 (17). - P. 4705-4713.
  17. Gibson, G. Hints of hidden heritability in GWAS. / G. Gibson // Nature Genetics. - 2010. - № 42 (7). - P. 558-560.
  18. Haines, J.L. Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration / J.L. Haines // Science. - 2005. - № 308 (5720). -P. 419-421.
  19. Hood, L. Systems biology and p4 medicine: past, present, and future / L. Hood // Rambam Maimonides Med. J. - 2013. - № 4 (2). - Р. 12.
  20. Kety, S.S. Mental Illness in the Biological and Adoptive Relatives of Schizophrenic Adoptees / S.S. Kety // Archives of General Psychiatry. - 1994. - № 51 (6). - P. 442.
  21. Mahajan, A. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps / A. Mahajan [et al.] // Nature Genetics. - 2018. - № 50 (11). - P. 1505-1513.
  22. Middeldorp, C.M. The value of polygenic analyses in psychiatry / C.M Middeldorp, N.R. Wray // World Psychiatry. - 2008. - № 17 (1). - P. 26-28.
  23. Okbay, A. Genome-wide association study identifies 74 loci associated with educational attainment / A. Okbay [et al.] // Nature. - 2016. - № 533 (7604). - P. 539-542.
  24. Panoutsopoulou, K. Finding common susceptibility variants for complex disease: past, present and future / K. Panoutsopoulou, E. Zeggini // Briefings in Functional Genomics and Proteomics. - 2009. - № 8 (5). - P. 345-352.
  25. Pearson, T.A. How to interpret a genome-wide association study / T.A. Pearson, T.A. Manolio // JAMA. - 2008. - № 299 (11). - P. 1335-1344.
  26. Petty, E.M. Handbook of human genetic linkage / E.M. Petty // Trends in Endocrinology & Metabolism. - 1995. - № 6 (1). - P. 30-31.
  27. Pickrell, J.K. Detection and interpretation of shared genetic influences on 42 human traits / J.K. Pickrell [et al.] // Nature Genetics. - 2016. - № 48 (7). - P. 709-717.
  28. Polderman, T.J.C. Meta-analysis of the heritability of human traits based on fifty years of twin studies / T.J.C. Polderman [et al.] // Nature Genetics. - 2015. - № 47 (7). - P. 702-709.
  29. Rees, A. Dna polymorphism adjacent to human apoprotein a-1 gene: relation to hypertriglyceridaemia / A. Rees [et al.] // The Lancet. - 1983. - № 321 (8322). - P. 444-446.
  30. Wang, W.Y.S. Genome-wide association studies: theoretical and practical concerns / W.Y.S. Wang [et al.] // Nature Reviews Genetics. - 2005. - № 6 (2). - P. 109-118.

Statistics

Views

Abstract - 18

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2020 Kutelev G.G., Krivoruchko A.B., Trandina A.E., Ivanov A.M., Cherkashin D.V., Marchenko A.A., Grishaev S.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies