Paraspinal structures of thermoregulation

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract


A detailed analysis of the literature on the structure and functions of the paraspinal structures of human thermoregulation involved in maintaining temperature homeostasis is presented. It is shown that in the process of evolution, a peculiar paraspinal morphofunctional complex is formed around the spinal center of thermoregulation, including thermal- generating structures (adipose and muscle tissue); venous thermal distribution rings formed by paraspinal venous plexuses and thermoregulatory nervous apparatus (meningeal and posterior branches of the spinal nerves and their nerve endings). It was found that the heat-generating structures are represented by adipose tissue of the epidural space, adipose tissue of the bone marrow, paravertebral and interscapular adipose tissue, back muscles and intercostal muscles). Bone marrow fatty tissue plays an important role not only in thermoregulation, but also in bone remodeling. Fatty tissue mainly includes components of white and a small amount of brown adipose tissue. Heat from muscles through the venous system of the spinal column affects the functioning of the spinal center of thermoregulation by contractile thermogenesis. It has been shown that around the center of thermoregulation of the spinal cord, venous vessels form four thermal distribution rings. The first of them is the venous bed of the soft membrane of the spinal cord and cerebrospinal fluid of the subarachnoid space; the second is the internal vertebral venous plexus; the third - intraosseous (intraorgan) venous plexuses of the vertebrae; the fourth is the anterior and posterior external vertebral venous plexuses. All four thermal distribution venous rings anastomose among themselves, forming a single thermal distribution system around the spinal center of thermoregulation. The innervation of thermal generating structures and thermal distribution of venous rings is carried out by somatic and autonomic nerve fibers.

Full Text

Restricted Access

References

  1. Афанасьев, Ю.Н. Бурая жировая ткань / Ю.Н. Афанасьев, Е.Д. Колодезникова. - Иркутск: Из-во Иркут. ун-та, 1995. - 184 с.
  2. Васильева, Е.Д. Некоторые вопросы термогенеза и жирового обмена у млекопитающих при действии холода / Е.Д. Васильева // Успехи современной биологии. - 1974. - № 78 (1-4). - С. 139-156.
  3. Золина, Е.И. Структурные особенности эпидуральной клетчатки позвоночного канала / Е.И. Золина // Мат. 2-го Всесоюзн. симп. «Научно-методические вопросы преподавания изучения мягкого остова». - Горький, 1973. - С. 160-161.
  4. Илизаров, Г.А. Кровоснабжение позвоночника и влияние на его форму изменений трофики и нагрузки: клиническое и анатомо-экспериментальное исследование / Г.А. Илизаров, А.М. Мархашов. - Челябинск: Южно-Урал. кн. изд-во, 1981. - 224 с.
  5. Мотавкин, П.А. Гистофизиология кровообращения в спинном мозге / П.А. Мотавкин, Ю.Н. Пиголкин, Ю.В. Каминский. - М.: Наука, 1994. - 223 с.
  6. Протасов, В.Я. Позвоночный венозный бассейн как центральный сегментационный коллектор организма: автореф. дис. … д-ра мед. наук / В.Я. Протасов. - М., 1969. - 40 с.
  7. Родионов, А.А. Развитие и макромикроскопическое строение бурой жировой ткани эпидурального пространства в пренатальном онтогенезе человека / А.А. Родионов, Е.И. Полоротова, С.С. Целуйко // Современные аспекты диагностики, лечения и профилактики заболеваний человека: юб. сб. научн. тр., посвящ. 50-летию Амурской гос. мед. акад. - Благовещенск, 2002. - С. 537-540.
  8. Родионов, А.А. Морфофункциональная характеристика боковых сводов эпидурального пространства спинного мозга и их клиническое значение / А.А. Родионов, И.В. Гайворонский, А.И. Гайворонский // Морфология. - 2014. - № 146 (4). - С. 26-30.
  9. Brock, J.A. Spinal cord thermosensitivity: An afferent phenomenon / J.A. Brock, R.M. McAllen // Temperature. - 2016. - Vol. 3, № 2. - P. 232-239.
  10. Clemens, H.J. Beitrag zur Histologie der Plesus venosi vertebrales interni / H.J. Clemens // Z. Mikr. Anat. Forsch. - 1961. - Vol. 27, № 2. - P. 183-189.
  11. Dahzan, N. Intervertebral veins directly connecting the vertebral venous system to the azygos venous system rather than the proximal end of the posterior intercostal veins / N. Dahzan, R. Soames // Rev. Arg. de Anat. Clin. - 2015. - Vol. 7, № 2. - P. 88-92.
  12. Gao, Y.J. Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity lipoatrophy - related vascular dysfunction / Y.J. Gao // Curr. Pharm. Des. - 2007. - № 13. - P. 2185-2192.
  13. Hoogland, P.V. The posterior intercostals vein: A thermoregulatory gateway to the internal vertebral venous plexus / P.V. Hoogland [et al.] // Clinical Anatomy. - 2013. - № 26. - P. 735-740.
  14. Jastroch, M. Insights into brown adipose tissue evolution and function from non-model organisms / M. Jastroch, R. Oelkrug, S. Keipert // J. of Experimental Biology. - 2018. - № 221. - P. 1-9.
  15. Klingenspor, M. Brown Adipose Tissue / M. Klingenspor [et al.] - Springer: Cham, 2017. - P. 91-147.
  16. Oelkrug, R. Brown adipose tissue: physiological function and evolutionary / R. Oelkrug, E.T. Polymeropoulos, M. Jastroch // J. Comp Physiol. -2015. - № 185. - P. 587-606.
  17. Sacks, H. Anatomical Locations of Human Brown Adipose Tissue. Functional Relevance and Implications in Obesity and Type 2 Diabetes / H. Sacks, M.E. Symonds // Diabetes. - 2013. - № 62. - P. 1783-1790.
  18. Shanmugan, M. Bone marrow adipose tissue and skeletal health / M. Shanmugan, G. Rajgopal, C.L. Sinal // Cur Osteoporos Rep. - 2018. - № 16(4). - 434-442 p.
  19. Wang, W. Control of brown and beige fat / W. Wang, P. Seale. Molecular Cell Biology. - 2016. - № 17. - P. 691-702.
  20. Wünnenberg W. Studies on the ascending pathways from the thermosensitive region of the spinal cord / W. Wünnenberg, K. Brück // Pflugers Arch. - 1970. - № 321. - P. 233-241.

Statistics

Views

Abstract - 15

PDF (Russian) - 0

Cited-By


Article Metrics

Metrics Loading ...

PlumX

Dimensions


Copyright (c) 2020 Gaivoronskiy I.V., Rodionov A.A., Gaivoronskiy A.I., Gaivoronskaya M.G., Nichiporuk G.I., Goryacheva I.A., Khabibullina N.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies