Stem cell exosomes in the pathophysiology of cardiovascular diseases

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This study focused on the current state of the therapeutic potential of extracellular vesicles, which depends on the methods of their isolation and composition and the characteristics of the vesicular and nonvesicular components. Myocardial damage, particularly as a result of acute myocardial infarction, leads to irreversible death of cardiomyocytes and sarcomeres and ultimately to heart failure. The adult heart has limited regenerative capacity; therefore, stimulation of endogenous repair and regenerative potentials using cell therapy has potential. Moreover, the benefit from the injection of stem cells and progenitor cells into the damaged myocardium is mediated by the factors they secrete. In particular, exosomes, nanosized secreted extracellular vesicles of endosomal origin, have become key signaling organelles in intercellular communication and are currently considered key regenerative components of the secretome of stem and progenitor cells. Exosomes released from cardiac embryonic and mesenchymal stem cells, resident stem and progenitor cells (including a specific subgroup of cardiosphere cells), induced pluripotent stem cells, and cardiomyocytes isolated from these cells have cardioprotective, immunomodulatory, and reparative abilities. The use of exosomes in the targeted transport of drugs in lipid-like nanocontainers and extracellular vesicles is another promising area. Because artificial drug carriers, including liposomes and lipid-based nanoparticles, are limited by potential toxicity, immunogenicity, and inability to target specific organs, exosomes hold good promise as potential drug carriers. Compounds can be transported both inside exosomes and on their surface. Secreted extracellular vesicles, particularly exosomes, can be considered a key functional component of the secretome of stem cells and cardiogenic progenitor cells (mesenchymal stem cells, endogenous cardiac progenitor cells, cardiospheres, bone marrow embryonic stem cells, and bone marrow induced pluripotent stem cells). They have demonstrated therapeutic efficacy in preclinical models in the study of cardiovascular pathology.

Full Text

Restricted Access

About the authors

Andrei S. Rudoy

Institute of Physiology of the National Academy of Sciences of Belarus

Email: andrew_rudoy@mail.ru
ORCID iD: 0000-0001-9010-0264
SPIN-code: 9508-1330

MD, Dr. Sci. (Med.), professor

Belarus, Minsk

Alexander V. Moskalev

Kirov Military Medical Academy

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0009-0004-5659-7464
SPIN-code: 8227-2647

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Lázár E, Sadek HA, Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur Heart J. 2017;38(30):2333–2342. doi: 10.1093/eurheartj/ehx343
  2. Nguyen PK, Rhee J-W, Wu JC. Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol. 2016;1(7):831–841. doi: 10.1001/jamacardio.2016.2225
  3. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–705. doi: 10.1038/35070587
  4. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428(6983):668–673. doi: 10.1038/nature02460
  5. Tompkins BA, Balkan W, Winkler J, et al. Preclinical studies of stem cell therapy for heart disease. Circ Res. 2018;122(70): 1006–1020. doi: 10.1161/CIRCRESAHA.117.312486
  6. Dergilev KV, Vasilets ID, Tsokolaeva ZI, et al. Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells. Therapeutic archive. 2020;92(4):111–120. EDN: BCFIOG doi: 10.26442/00403660.2020.04.000634
  7. Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi: 10.1016/S0140-6736(12)60195-0
  8. Tarui S, Ishigami S, Ousaka D, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow up of the Transcoronary Infusion of Cardiac Progenitor Cells in patients with single-ventricle physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198–1208.e2. doi: 10.1016/j.jtcvs.2015.06.076
  9. Ishigami S, Ohtsuki S, Eitoku T, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162–1173. doi: 10.1161/CIRCRESAHA.116.310253
  10. Chakravarty T, Makkar RR, Ascheim DD, et al. ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: rationale and design. Cell Transplant. 2017;26(2):205–214. doi: 10.3727/096368916X692933
  11. Chakravarty T, Makkar R, Henry T, et al. Multivessel intracoronary infusion of allogeneic derived cardiosphere cells in cardiomyopathy: long term outcomes of the dilated cardiomyopathy intervention with allogeneic myocardially regenerative cells (DYNAMIC STUDY). J Am Coll Cardiol. 2016;68(18-1):B332. doi: 10.1016/j.jacc.2016.09.848
  12. Taylor M, Jefferies J, Byrne B, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):866–878. doi: 10.1212/WNL.0000000000006950
  13. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4): 688–692. doi: 10.1016/j.jmb.2015.09.019
  14. Kalra H, Simpson RJ, Hong J, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):1001450. doi: 10.1371/journal.pbio.1001450
  15. Kim D-K, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2(1):20384. doi: 10.3402/jev.v2i0.20384
  16. Banerjee MN, Bolli R, Hare JM. Clinical studies of cell therapy in cardiovascular medicine: Recent developments and future directions. Circ Res. 2018;123(2):266–287. doi: 10.1161/CIRCRESAHA.118.311217
  17. Tang X-L, Li Q, Rokosh G, et al. Long-term outcome of administration of c-kitPOS cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res. 2016;118(7):1091–1105. doi: 10.1161/CIRCRESAHA.115.307647
  18. Ibrahim A, Marbán E. Exosomes: fundamental biology and roles in cardiovascular physiology. Ann Rev Physiol. 2016;78:67–83. doi: 10.1146/annurev-physiol-021115-104929
  19. Zhang ZG, Buller B, Chopp M. Exosomes – beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol. 2019;15(4):193–203. doi: 10.1038/s41582-018-0126-4
  20. Balbi C, Vassalli G. Exosomes: Beyond stem cells for cardiac protection and repair. Stem Cells. 2020;38(11):1387–1399. doi: 10.1002/stem.3261
  21. Glembotski CC. Expanding the paracrine hypothesis of stem cell–mediated repair in the heart: When the unconventional becomes conventional. Circ Res. 2017;120(5):772–774. doi: 10.1161/CIRCRESAHA.116.310298
  22. Théry C, Witwer K, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750
  23. Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–232. doi: 10.1038/nmeth.4185
  24. Sluijter JP, Davidson SV, Boulanger CM, et al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2018;114(1):19–34. doi: 10.1093/cvr/cvx211
  25. Das S, Ansel KM, Bitzer M, et al. The extracellular RNA communication consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell. 2019;177(2): 231–242. doi: 10.1016/j.cell.2019.03.023
  26. Patel GK, Khan MA, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9(1):5335. doi: 10.1038/s41598-019-41800-2
  27. Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641. doi: 10.1038/srep33641
  28. Mol EA, Goumans MJ, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology and Medicine. 2017;13(6):2061–2065. doi: 10.1016/j.nano.2017.03.011
  29. Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–445.e18. doi: 10.1016/j.cell.2019.02.029
  30. Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343. doi: 10.1038/s41556-018-0040-4
  31. Pluchino S, Smith JA. Explicating exosomes: reclassifying the rising stars of intercellular communication. Cell. 2019;177(2): 225–227. doi: 10.1016/j.cell.2019.03.020
  32. Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: a clinician’s view of the state of the problem. Part 1. History of the issue. Eurasian heart journal. 2023;(1):100–107. EDN: TLEZJR doi: 10.38109/2225-1685-2023-1-100-107
  33. Barile L, Cervio E, Lionetti V, et al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc Res. 2018;114(7):992–1005. doi: 10.1093/cvr/cvy055
  34. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596
  35. Gupta S, Knowlton AA. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol. 2007;292(6):H3052–H3056. doi: 10.1152/ajpheart.01355.2006
  36. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–2146. doi: 10.1172/JCI70577
  37. Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014;74:139–150. doi: 10.1016/j.yjmcc.2014.05.001
  38. Cheng M, Yang J, Zhao X, et al. Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 2019;10:959. doi: 10.1038/s41467-019-08895-7
  39. Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):100–106. doi: 10.1161/CIRCRESAHA.117.311326
  40. Biemmi V, Milano G, Ciullo A, et al. Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation. Theranostics. 2020;10(6):2773. doi: 10.7150/thno.39072
  41. Elahi FM, Farwell DG, Nolta JA, et al. Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem Cells. 2020;38(1):15–21. doi: 10.1002/stem.3061
  42. Yu H, Wang Z. Cardiomyocyte-derived exosomes: biological functions and potential therapeutic implications. Front. Physiol. 2019;10:1049. doi: 10.3389/fphys.2019.01049
  43. Ibrahim AG-E, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2014;2(5):606–619. doi: 10.1016/j.stemcr.2014.04.006
  44. Gallet R, Dawkins J, Luthringer D, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(3):201–211. doi: 10.1093/eurheartj/ehw240
  45. Kervadec A, Bellamy VE, El Harane N, et al. Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant. 2016;35(6):795–807. doi: 10.1016/j.healun.2016.01.013
  46. Milano G, Biemmi V, Lazzarini E, et al. Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 2020;116(2):383–392. doi: 10.1093/cvr/cvz108
  47. Vrijsen KR, Maring JA, Chamuleau SA, et al. Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Health Mater. 2016;5(19):2555–2565. doi: 10.1002/adhm.201600308
  48. Tseliou E, Fouad J, Reich H, et al. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol. 2015;66(6): 599–611. doi: 10.1016/j.jacc.2015.05.068
  49. Cambier LY, de Couto G, Ibrahim A, et al. RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med. 2017;9(3):337–352. doi: 10.15252/emmm.201606924
  50. Aminzadeh MA, Rogers RG, Fournier M, et al. Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem Cell Rep. 2018;10(3):942–955. doi: 10.1016/j.stemcr.2018.01.023
  51. Khan M, Nickoloff E, Abramova T, et al. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res. 2015;117(1):52–64. doi: 10.1161/CIRCRESAHA.117.305990
  52. Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–69. doi: 10.1016/j.ijcard.2015.05.020
  53. Bobis-Wozowicz S, Kmiotek K, Sekula M, et al. Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells. 2015;33(9):2748–2761. doi: 10.1002/stem.2078
  54. Lee WH, Chen W-Y, Shao N-Y, et al. Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell-versus induced pluripotent stem cell-derived cardiomyocytes. Stem Cells. 2017;35(10):2138–2149. doi: 10.1002/stem.2669
  55. Kenneweg F, Bang C, Xiao K, et al. Long noncoding RNA-enriched vesicles secreted by hypoxic cardiomyocytes drive cardiac fibrosis. Mol Ther Nucleic Acids. 2019;18:363–374. doi: 10.1016/j.omtn.2019.09.003
  56. Agarwal U, George A, Bhutani S, et al. Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell–derived exosomes from pediatric patients. Circ Res. 2017;120(4):701–712. doi: 10.1161/CIRCRESAHA.116.309935
  57. Qiao L, Hu S, Zhang H, et al. microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Investig. 2019;129(6):2237–2250. doi: 10.1172/JCI123135
  58. Davidson SM, Riquelme JA, Takov K, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med. 2018;22(1):141–151. doi: 10.1111 /jcmm.13302
  59. Kim H, Yun N, Mun D, et al. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun. 2018;499(4):803–808. doi: 10.1016/j.bbrc.2018.03.227
  60. Ciullo A, Biemmi V, Milano G, et al. Exosomal expression of CXCR4 targets cardioprotective vesicles to myocardial infarction and improves outcome after systemic administration. Int J Mol Sci. 2019;20(3):468. doi: 10.3390/ijms20030468
  61. Cheng Y, Zeng Q, Han Q, et al. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019;10(4):295–299. doi: 10.1007/s13238-018-0529-4
  62. Sokolov AV, Kostin NN, Ovchinnikova LA, et al. Targeted drug delivery in lipid-like nanocages and extracellular vesicles. Acta Naturae. 2019;11(2):28–41. EDN: XDCTRD doi: 10.32607/20758251-2019-11-2-28-41
  63. Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16:81. doi: 10.1186/s12951-018-0403-9
  64. Sawada S-I, Sato YT, Kawasaki R, et al. Nanogel hybrid assembly for exosome intracellular delivery: Effects on endocytosis and fusion by exosome surface polymer engineering. Biomater Sci. 2020;8: 619–630. doi: 10.1039/c9bm01232j
  65. Sedykh SE, Timofeeva AM, Kuleshova AE, Nevinskiy GA. Milk exosomes as delivery agents for therapy of cancer diseases. Advances in Molecular Oncology. 2022;9(2):23–31. EDN: XOBUYO doi: 10.17650/2313-805X-2022-9-2-23-31
  66. Andriolo G, Provasi E, Lo Cicero V, et al. Exosomes from human cardiac progenitor cells for therapeutic applications: development of a GMP-grade manufacturing method. Front Physiol. 2018;9:1169. doi: 10.3389/fphys.2018.01169
  67. Matsumoto A, Takahashi Y, Chang H-Y, et al. Blood concentrations of small extracellular vesicles are determined by a balance between abundant secretion and rapid clearance. J Extracell Vesicles. 2020;9(1):1696517. doi: 10.1080/20013078.2019.1696517

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Biogenesis of exosomes (by A.S. Rudoy, 2023)

Download (581KB)
3. Fig. 2. Potential mechanisms of the positive effects of extracellular vesicles secreted by cardiac progenitor cells and closely related cells of cardiospheric origin in myocardial ischemia and ischemic–reperfusion damage (by A.S. Rudoy, 2023)

Download (212KB)
4. Fig. 3. Mechanisms for increasing specific targeting of exosomes (by A.S. Rudoy, 2023)

Download (265KB)

Copyright (c) 2024 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies