Features of the immunopathogenesis of infections caused by viroids and satellite viruses

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

One of the main molecular mechanisms of viroids that cause disease in plants is the blocking of ribonucleic acid functions of host cells by viroid ribonucleic acid. The variety of splicing options is due to viroid replication, which requires ribonucleic acid polymerase, ribonuclease, ligase, and deoxyribonucleic acid working on ribonucleic acid matrices. Viroids with faster replication are preferred. Identifying host proteins that interact with viroid ribonucleic acid is critical in the pathogenesis of viroid infections, which leads to gene expression changes of host plants. The study of the pathogenesis of plant infections caused by satellite viruses has shown that they have a common ancestor and that the satellite viruses suppress the reproduction of the helper virus. Satellite viruses require accessory viral proteins to encode capsid proteins for genome encapsulation and reproduction. Replication occurs in the cytoplasm and is induced by ribonucleic acid polymerase of the helper virus. Hepatitis D virus ribonucleic acid replication requires cell ribonucleic acid polymerase II. When the viral and endosomal membranes fuse, the ribonucleic acid of the hepatitis D virus moves into the nucleus, and antigenomic ribonucleic acid is produced, which is the template for the synthesis of matrix ribonucleic acids encoding delta protein. The minor delta antigen regulates ribonucleic acid editing, and the large delta antigen inhibits viral replication and induces a signal for the transport of ribonucleic acid from the cell nucleus to the cytoplasm, which ensures the assembly of new viral particles. Large and small delta antigens have been detected in the brain, liver, lungs, kidneys, and spleen of snakes by reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemical assays, indicating that all delta viruses possibly share a common ancestor that arose before the divergence of reptiles and mammals.

Full Text

Restricted Access

About the authors

Alexander V. Moskalev

Kirov Military Medical Academy

Author for correspondence.
Email: alexmav195223@yandex.ru
ORCID iD: 0009-0004-5659-7464
SPIN-code: 8227-2647

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

Boris Yu. Gumilevsky

Kirov Military Medical Academy

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0001-8755-2219
SPIN-code: 3428-7704

MD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Vasiliy Ya. Apchel

Kirov Military Medical Academy; Herzen State Pedagogical University of Russia

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0001-7658-4856
SPIN-code: 4978-0785

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg; Saint Petersburg

Vasiliy N. Tsygan

Kirov Military Medical Academy

Email: alexmav195223@yandex.ru
ORCID iD: 0000-0003-1199-0911
SPIN-code: 7215-6206

MD, Dr. Sci. (Med.), professor

Russian Federation, Saint Petersburg

References

  1. Moskalev AV, Sboychakov VB, Apchel AV, Tsygan VN. Biological eeffects of viroids. Bulletin of the Russian Military Medical Academy. 2018;(2(62)):209–214. EDN: XRZFAD doi: 10.17816/brmma12333
  2. Dissanayaka Mudiyanselage SD, Qu F, Tian N, et al. Potato spindle tuber viroid RNA-templated transcription: factors and regulation. Viruses. 2018;10(9):503. doi: 10.3390/v10090503
  3. Krupovic M, Kuhn JH, Fischer MG. A classification system for virophages and satellite viruses. Arch Virol. 2016;161:233–247. doi: 10.1007/s00705-015-2622-9
  4. Makhotenko AV. Factors of the plant nucleus controlling the protective response of plants to viral infection. [dissertation]. Moscow; 2020. 122 p. (In Russ.) EDN: RSZEAK
  5. Castellano M, Martinez G, Marques MC, et al. Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. J Exp Bot. 2016;67(19):5857–5868. doi: 10.1093/jxb/erw353
  6. Zahid K, Zhao JH, Smith NA, et al. Nicotiana small RNA sequences support a host genome origin of Cucumber mosaic virus satellite RNA. PLoS Genet. 2015;11(1):el004906. doi: 10.1371/journal.pgen.1004906
  7. Matsushita Y, Yanagisawa H, Sano T. Vertical and horizontal transmission of pospiviroids. Viruses. 2018;10(12):706. doi: 10.3390/v10120706
  8. Delgado S, Navarro B, Serra P, et al. How sequence variants of a plastid- replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol. 2019;16(7):906–917. doi: 10.1080/15476286.2019.1600396
  9. Arkhipova AV, Vishnichenko VK. Molecular mechanisms of plant tolerance to viral pathogens: changes in transcriptional programs of expression of autophagy factors and RQC (RNA quality control) in the process of persistent allexivirus infection. Agrarian Science. 2019;2:50–56. doi: 10.32634/0869–8156–2019–326–2–50-56
  10. He L, Wang Q, Gu Z, et al. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res. 2019;47(15):8255–8271. doi: 10.1093/nar/gkz564
  11. Zhirnov IV, Trifonova EA, Kochetov AV. Role of auto- and heterologous family III ribonucleases in mechanisms of pathogen resistance and regulation of gene expression in higher plants. Vavilov journal of Genetics and Breeding. 2013;17(3):558–563. (In Russ.) EDN: RUHMZN
  12. Antipova AY, Lavrentyeva IN. Viruses of the parvoviridae family: molecular genetical aspects of reproduction and medical importance. Russian Journal of Infection and Immunity. 2017;7(1):7–20. EDN: YHCVKZ doi: 10.15789/2220-7619-2017-1-7-20
  13. Cervera A, Urbina D, de la Peña M. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Genome Biology. 2016;17(1):135. doi: 10.1186/s13059-016-1002-4
  14. Daros JA. Eggplant latent viroid: a friendly experimental system in the family Avsunviroidae. Mol Plant Pathol. 2016;17(8):1170–1177. doi: 10.1111 / mpp.12358
  15. Nabeshima T, Doi M, Nosakowa M. Agrobacterium-mediated inoculation of chrysanthemum (Chrysanthemum morifolium) plants with chrysanthemum stunt viroid. J Virol Methods. 2016;234: 169–173. doi: 10.1016/j.jviromet.2016.05.001
  16. Pagan J, Garcia-Arenal F. Tolerance to plant pathogens: theory and experimental evidence. Int J Mol Sci. 2018;19(3):810. doi: 10.3390/ijms190308103
  17. Pardel DB, Santacon H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front Plant Sci. 2018;9:1575. doi: 10.3389/tpis.2018.01575
  18. Patrushev LI, Minkevich IG. Problem of the size of eukaryotic genomes. Advances in Biological Chemistry. 2007;47:293–370. (In Russ.)
  19. Rumyantsev AM. Genetic control of regulation of metabolism genes in yeast Pichia pastoris. [dissertation] Saint Petersburg; 2016. 153 р. (In Russ.) EDN: SEWZBH
  20. Maillard PV, van der Veen AG, Poirier EZ, et al. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 2019;38(8):e100941. doi: 10.15252/embj.2018100941
  21. Race B, Williams K, Orru CD, et al. Lack of transmission of chronic wasting disease to cynomolgus macaques. Virol. 2019;92(14):e00550–e00618. doi: 10.1128/JVI.00550-18
  22. Nash A, Dalziel R, Fitzgerald J. Mims’ pathogenesis of infectious disease. 6th ed. Academic Press, San Diego, CA. 2015. 348 p.
  23. Krupovic M Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci USA. 2017;114(12): E2401–E2410. doi: 10.1073/pnas.1621061114
  24. Flint J, Racaniello VR, Rall GF. Principles of virology, Vol. II: Pathogenesis and control, 5th ed. ASM Press, Washington, DC. 2020. 494 p.
  25. Parrish NF, Tomonaga K. Endogenized viral sequences in mammals. Curr Opin Microbiol. 2016;31:176–183. doi: 10.1016/j.mib.2016.03.002
  26. Mentha N, Clement S, Negro F, et al. A review on hepatitis D: from virology to new therapies. J Adv Res. 2019;17:3–15. doi: 10.1016/j.jare.2019.03.009
  27. Palukaitis P. Satellite RNAs and satellite viruses. Mol Plant Microbe Interact. 2016;29(3):181–186. doi: 10.1094/MPMI-10-15-0232- FI
  28. Lempp FA, Schlund F, Rieble L, et al. Recapitulation of HDV infection in a fully permissive hepatoma cell line allows efficient drug evaluation. Nat Commun. 2019;10:2265. doi: 10.1038/s41467-019-10211-2
  29. Katze MG, Korth MJ, Law GL, et al. Viral Pathogenesis: From Basics to Systems Biology. Academic Press, San Diego, CA; 2016. 422 p.
  30. Burrell C, Howard C, Murphy F. Fenner and White’s Medical Virology, 5th ed. Academic Press, San Diego, CA. 2016. 454 p.
  31. Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013;47:601–623. doi: 10.1146/annurev-genet-110711-155524
  32. Maass F, Schulz I, Lingor P, et al. Cerebrospinal fluid biomarker for Parkinson’s disease: An overview. Mol Cell Neurosci. 2019;97: 60–66. doi: 10.1016/j.mcn.2018.12.005
  33. Shkundina IS, Ter-Avanesyan MD. Priony. Uspekhi biologicheskoi khimii. 2006;46:3–42 (In Russ.)
  34. Tatarnikova OG, Orlov MA, Bobkova NV. Beta-amyloid and tau-protein: structure of interaction and prion-like properties. Uspekhi biologicheskoi khimii. 2015;80(13):1800–1819. (In Russ.) doi: 10.1134/S000629791513012X
  35. Brandel JP, Culeux A, Grznarova K, et al. Amplification techniques and diagnosis of prion diseases. Rev Neurol (Paris). 2019;175: 458–463. doi: 10.1016/j.neurol.2019.06.002
  36. Utengеnova AB, Utepkaliyeva AP, Kabdrakhmanova GB. Alpha-synuclein as an immunohistochemical marker of Parkinson’s disease. Pharmacy of Kazakhstan. 2022;(4):154–162. EDN: TDCFVG doi: 10.53511/pharmkaz.2022.66.69.024
  37. Giles K, Olson SH, Prusiner SB. Developing therapeutics for PrP prion Diseases. Cold Spring Harb Perspect Med. 2017;7(4):a023747. doi: 10.1101/cshperspect.a023747
  38. Burke CM, Walsh DJ, Steele AD, et al. Full restoration of specific infectivity and strain properties from pure mammalian prion protein. PLoS Pathog. 2019;15(3):el007662. doi: 10.1371/journal.ppat.1007662
  39. Galkin AP. Identification and analysis of the interaction of prions and amyloids in the proteome of the yeast Saccharomyces ctrevisiae. [dissertation] Saint Petersburg; 2015. 205 p. (In Russ.)
  40. Osterholm MT, Anderson CJ, Zabel MD, et al. Chronic wasting disease in cervids: implications for prion transmission to humans and other animal species. mBio. 2019;10(4):e01091–e0119. doi: 10.1128/mBio.01091-19

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Replication of two types of viroids in plants (J. Flint et al., 2020)

Download (921KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies