Methylation Profile of Cell-Free DNA as a Diagnostic Marker for Myocarditis
- Authors: Zykova A.V.1, Malyshkin S.S.2, Mullin E.V.1, Krivoruchko A.B.3
-
Affiliations:
- ERA Military Innovative Technopolis
- ERA Military Innovation Technopolis
- Kirov Military Medical Academy
- Issue: Vol 27, No 2 (2025)
- Pages: 277-284
- Section: Review
- Submitted: 18.09.2024
- Accepted: 25.03.2025
- Published: 23.06.2025
- URL: https://journals.eco-vector.com/1682-7392/article/view/636142
- DOI: https://doi.org/10.17816/brmma636142
- EDN: https://elibrary.ru/HFVXVT
- ID: 636142
Cite item
Abstract
Studies on epigenetic modifications that could enable the tissue-specific partitioning of a general pool of circulating cell-free DNA for diagnosing myocarditis were analyzed. Despite the long history of research on cardiovascular disease, the actual incidence of myocarditis within the population remains unclear, as the condition is difficult to detect using conventional diagnostic methods. The advantages of screening a pool of cell-free DNA in the peripheral blood for detecting various pathologies (such as cancer, fetal aneuploidies, and transplant rejection) have been acknowledged worldwide. However, this approach is limited when analyzing the cell-free DNA derived from the reference genome. DNA methylation is one of the most crucial and well-studied mechanisms of epigenetic regulation. The aberrant methylation status of candidate genes is implicated in the development of cardiovascular diseases and may serve as a marker for assessing their progression. The methylation patterns are unique to each cell type, remain consistent among the same cell type within an individual, and are characterized by high stability. The studies reviewed identified loci associated with cardiomyocyte-specific patterns of DNA methylation. Moreover, in various diseases of the circulatory system, the same cytosine–guanine dinucleotide sites were found to be differentially methylated. This finding not only confirms the close association between DNA methylation profiles and cardiovascular diseases but also supports the hypothesis that the methylation status of specific cytosine–guanine dinucleotide sites has high diagnostic specificity for various pathologies. Thus, an analysis of cell-free DNA methylation profiles confirms its tissue-specific origin and enables the development of highly specific diagnostic approaches for myocardial disorders. Furthermore, comparing the methylation levels of identical cytosine–guanine dinucleotide sites offers promising opportunities for the development of highly specific diagnostic systems for myocarditis and other cardiovascular diseases.
Full Text

About the authors
Anna V. Zykova
ERA Military Innovative Technopolis
Author for correspondence.
Email: era_otd6@mil.ru
ORCID iD: 0009-0001-9825-1945
SPIN-code: 8208-0839
Cand. Sci. (Pedagogy), Associate Professor
Russian Federation, AnapaSvyatoslav S. Malyshkin
ERA Military Innovation Technopolis
Email: era_otd6@mil.ru
ORCID iD: 0000-0003-4366-0028
SPIN-code: 8109-3446
Russian Federation, Anapa
Evgeny V. Mullin
ERA Military Innovative Technopolis
Email: era_otd6@mil.ru
ORCID iD: 0000-0003-0894-6426
SPIN-code: 2469-8400
Russian Federation, Anapa
Alexander B. Krivoruchko
Kirov Military Medical Academy
Email: era_otd6@mil.ru
SPIN-code: 1324-0239
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgReferences
- Sagar S, Liu PP, Cooper LT Jr. Myocarditis. Lancet. 2012;379(9817): 738–747. doi: 10.1016/S0140-6736(11)60648-X
- Chen W, Jeudy J. Assessment of myocarditis: Cardiac MR, PET/CT, or PET/MR? Curr Сardiol Rep. 2019;21(8):76. doi: 10.1007/s11886-019-1158-0
- Chow LH, Radio SJ, Sears TD, McManus BM. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol. 1989;14(4):915–920. doi: 10.1016/0735-1097(89)90465-8
- Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4(6):650–661. doi: 10.1158/2159-8290.CD-13-1014
- Maheswaran S, Haber DA. Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev. 2010;20(1):96–99. doi: 10.1016/j.gde.2009.12.002
- Beeharry MK, Liu W-T, Yan M, Zhu Z-G. New blood markers detection technology: A leap in the diagnosis of gastric cancer. World J Gastroenterol. 2016;22(3):1202–1212. doi: 10.3748/wjg.v22.i3.1202
- Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–118. doi: 10.1373/clinchem.2012.194258
- Chandrasekharan S, Minear MA, Hung A, Allyse M. Noninvasive prenatal testing goes global. Sci Transl Med. 2014;6(231):231fs15. doi: 10.1126/scitranslmed.3008704
- Knight SR, Thorne A, Faro MLL. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. Transplantation. 2019;103(2):273–283. doi: 10.1097/TP.0000000000002482
- Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–586. doi: 10.2165/11631380-000000000-00000
- Jylhävä J, Lehtimäki T, Jula A, et al. Circulating cell-free DNA is associated with cardiometabolic risk factors: the Health 2000 Survey. Atherosclerosis. 2014;233(1):268–271. doi: 10.1016/j.atherosclerosis.2013.12.022
- Crisci G, Bobbio E, Gentile P, et al. Biomarkers in acute myocarditis and chronic inflammatory cardiomyopathy: An updated review of the literature. J Clin Med. 2023;12(23):7214. doi: 10.3390/jcm12237214
- Benincasa G, Mansueto G, Napoli C. Fluid-based assays and precision medicine of cardiovascular diseases: the ‘hope’ for Pandora’s box? J Clin Pathol. 2019;72(12):785–799. doi: 10.1136/jclinpath-2019-206178
- Tschöpe C, Ammirati E, Bozkurt B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18:169–193. doi: 10.1038/s41569-020-00435-x
- Lo YMD, Han DSC, Jiang P, Chiu RWK. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616. doi: 10.1126/science.aaw3616
- Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. PNAS. 2016;113(13):E1826–E1834. doi: 10.1073/pnas.151928611
- Zemmour H, Planer D, Magenheim J, et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nat Commun. 2018;9(1):1443. doi: 10.1038/s41467-018-03961-y
- Moss J, Magenheim J, Neiman D, et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 2018;9(1):5068. doi: 10.1038/s41467-018-07466-6
- Aravanis AM, Lee M, Klausner RD. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell. 2017;168(4):571–574. doi: 10.1016/j.cell.2017.01.030
- Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. Can Med Assoc J. 2006;174(3): 341–348. doi: 10.1503/cmaj.050774
- Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):200. doi: 10.1038/s41392-022-01055-2
- Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–658. doi: 10.1038/nrg.2017.57
- Cheedipudi S, Genolet O, Dobreva G. Epigenetic inheritance of cell fates during embryonic development. Front Genet. 2014;5:19. doi: 10.3389/fgene.2014.00019
- Al Aboud NM, Tupper C, Jialal I. Genetics, epigenetic mechanism. Stat Pearls Published; 2021. PMID: 30422591
- Li J, Liu C. Coding or noncoding, the converging concepts of RNAs. Front Genet. 2019;10:496. doi: 10.3389/fgene.2019.00496
- Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16(2):71–84. doi: 10.1038/nrg3863
- Cech TR, Steitz JA. The noncoding RNA revolution–trashing old rules to forge new ones. Cell. 2014;157(1):77–94. doi: 10.1016/j.cell.2014.03.008
- Li Y. Modern epigenetics methods in biological research. Methods. 2020;187:104–113. doi: 10.1016/j.ymeth.2020.06.022
- Peters LJF, Biessen EAL, Hohl M, et al. Small things matter: Relevance of microRNAs in cardiovascular disease. Front Physiol. 2020;11:793. doi: 10.3389/fphys.2020.00793
- Lewandowski P, Goławski M, Baron M, et al. A systematic review of miRNA and cfDNA as potential biomarkers for liquid biopsy in myocarditis and inflammatory dilated cardiomyopathy. Biomolecules. 2022;12(10):1476. doi: 10.3390/biom12101476
- Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–311. doi: 10.1111/j.1399-0004.2011.01809.x
- Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 2018;14:39. doi: 10.1186/s13223-018-0259-4
- Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95. doi: 10.1038/cr.2011.22
- Saba NF, Magliocca KR, Kim S, et al. Acetylated tubulin (AT) as a prognostic marker in squamous cell carcinoma of the head and neck. Head Neck Pathol. 2013;8(1):66–72. doi: 10.1007/s12105-013-0476-6
- McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. PNAS USA. 2014;111(48):E5178–E5186. doi: 10.1073/pnas.1415589111
- Hae JK, Kwon J-S, Shin S, et al. Trichostatin A prevents neointimal hyperplasia via activation of Krüppel like factor 4. Vasc Pharmacol. 2011;55(5-6):127–134. doi: 10.1016/j.vph.2011.07.001
- Yoon S, Kook T, Min H-K, et al. PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Exp Mol Med. 2018;50(7):1–14. doi: 10.1038/s12276-018-0121-2
- Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–1070. doi: 10.1126/science.1063852
- Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. PNAS USA. 2006;103(5):1412–1417. doi: 10.1073/pnas.0510310103
- Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196(2):261–82. doi: 10.1016/0022-2836(87)90689-9
- Singal R, Ginder GD. DNA methylation. Blood. 1999;93(12):4059–4070. doi: 10.1182/blood.V93.12.4059
- Lo R, Weksberg R. Biological and biochemical modulation of DNA methylation. Epigenomics UK. 2014;6(6):593–602. doi: 10.2217/epi.14.49
- Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63(6):797–811. doi: 10.1042/EBC20190037
- Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi: 10.1038/npp.2012.112
- McMahon KW, Karunasena E, Ahuja N. The roles of DNA methylation in the stages of cancer. Cancer J. 2017;23(5):257–261. doi: 10.1097/PPO.0000000000000279
- Slieker RC, van Iterson M, Luijk R, et al. Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biol. 2016;17(1):191. doi: 10.1186/s13059-016-1053-6
- Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. doi: 10.1186/gb-2013-14-10-r115
- Jylhävä J, Pedersen NL, Hagg S. Biological age predictors. EBioMedicine. 2017;21:29–36. doi: 10.1016/j.ebiom.2017.03.046
- Dugué P-A, Bassett JK, Joo JE, et al. Association of DNA methylation-based biological age with health risk factors and overall and cause-specific mortality. Am J Epidemiol. 2018;187(3):529–538. doi: 10.1093/aje/kwx291
- Gale CR, Marioni RE, Harris SE, et al. DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clin Epigenetics. 2018;10(1):101. doi: 10.1186/s13148-018-0538-4
- Dugué P-A, Bassett JK, Joo JE, et al. DNA methylation-based biological aging and cancer risk and survival: pooled analysis of seven prospective studies. Int J Cancer. 2018;142(8):1611–1619. doi: 10.1002/ijc.31189
- Grant CD, Jafari N, Hou L, et al. A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk. Geroscience. 2017;39(5–6):475–489. doi: 10.1007/s11357-017-0001-z
- Roetker NS, Pankow JS, Bressler J, et al. Prospective study of epigenetic age acceleration and incidence of cardiovascular disease outcomes in the ARIC study (atherosclerosis risk in communities). Circ Genom Precis Med. 2018;11(3):e001937. doi: 10.1161/CIRCGEN.117.001937
- Horvath S, Ritz BR. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY). 2015;7(12):1130–1142. doi: 10.18632/aging.100859
- Marioni RE, Shah S, McRae AF, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25. doi: 10.1186/s13059-015-0584-6
- Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol. 2013;20(3):274–281. doi: 10.1038/nsmb.2518
- Husseiny MI, Kaye A, Zebadua E, et al. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS ONE. 2014;9(4):e94591. doi: 10.1371/journal.pone.0094591
- Fendri K, Patten SA, Kaufman GN, et al. Microarray expression profiling identifies genes with altered expression in Adolescent Idiopathic Scoliosis. Eur Spine J. 2013;22:1300–1311. doi: 10.1007/s00586-013-2728-2
- Baudier J, Jenkins ZA, Robertson SP. The filamin-B-refilin axis – spatiotemporal regulators of the actin-cytoskeleton in development and disease. J Cell Sci. 2018;131(8):jcs213959. doi: 10.1242/jcs.213959
- Ren J, Jiang L, Liu X, et al. Heart-specific DNA methylation analysis in plasma for the investigation of myocardial damage. J Transl Med. 2022;20(1):36. doi: 10.1186/s12967-022-03234-9
- Tokarz-Deptula B, Malinowska M, Adamiak M, Deptula W. Coronins and their role in immunological phenomena. Cent Eur J Immunol. 2016;41(4): 435–441. doi: 10.5114/ceji.2016.65143
- Chen Y, Ip FCF, Shi L, et al. Coronin 6 regulates acetylcholine receptor clustering through modulating receptor anchorage to actin cytoskeleton. J Neurosci. 2014;34(7):2413–2421 doi: 10.1523/JNEUROSCI.3226-13.2014
- Zhang J, Li P, Li T, et al. Coronin 6 promotes hepatocellular carcinoma progression by enhancing canonical Wnt/beta-catenin signaling pathway. J Cancer. 2021;12(24):7465–7476. doi: 10.7150/jca.62873
- Krolevets M, Cate V, Prochaska JH, et al. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenet. 2023;15(1):56. doi: 10.1186/s13148-023-01468-y
- Herman JG, Graff JR, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. PNAS USA. 1996;93(18):9821–9826. doi: 10.1073/pnas.93.18.9821
- Eads CA, Danenberg KD, Kawakami K, et al. Methylight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):E32. doi: 10.1093/nar/28.8.e32
- Vedeld HM, Grimsrud MM, Andresen K, et al. Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile. Hepatology. 2022;75(1):59–73. doi: 10.1002/hep.32125
- Wojdacz TK, Borgbo T, Hansen LL. Primer design versus PCR bias in methylation independent PCR amplifications. Epigenetics-US. 2009;4(4): 231–234. doi: 10.4161/epi.9020
- Wojdacz TK, Moller TH, Thestrup BB, et al. Limitations and advantages of MS-HRM and bisulfite sequencing for single locus methylation studies. Expert Rev Mol Diagn. 2010;10(5):575–80. doi: 10.1586/erm.10.46
- Kristensen LS, Mikeska T, Krypuy M, Dobrovic A. Sensitive melting analysis after real time-methylation specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection. Nucleic Acids Res. 2008;36(7):e42. doi: 10.1093/nar/gkn113
- Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22. doi: 10.1038/nature08514
Supplementary files
