Участие внеклеточных везикул в заживлении ран
- Авторы: Криштоп В.В.1, Кокорина А.А.1, Шевелева В.С.1, Белевич В.Л.1, Глушаков Р.И.1
-
Учреждения:
- Военно-медицинская академия им. С.М. Кирова
- Выпуск: Том 27, № 3 (2025)
- Страницы: 407-420
- Раздел: Научные обзоры
- Статья получена: 17.02.2025
- Статья одобрена: 02.06.2025
- Статья опубликована: 20.09.2025
- URL: https://journals.eco-vector.com/1682-7392/article/view/655489
- DOI: https://doi.org/10.17816/brmma655489
- EDN: https://elibrary.ru/WEWXTG
- ID: 655489
Цитировать
Полный текст



Аннотация
Близость терапевтического воздействия эффектам клеточной терапии, а также высокая биосовместимость, низкая токсичность и иммуногенность экзосом делают их оптимальными кандидатами для исследований в регенеративной медицине и в частности в области ранозаживления. Анализируются данные о биологических эффектах экзосом на разных фазах ранозаживления у лабораторных животных. Результаты литературного анализа демонстрируют участие нативных экзосом во всех фазах ранозаживления. При гемостазе их источником являются преимущественно тромбоциты, в воспалительной фазе — нейтрофилы и моноциты, в пролиферативной фазе — кератиноциты, фибробласты, эндотелиоциты. Наибольшим терапевтическим потенциалом при экспериментальном лечении неосложненных ран кожи обладают экзосомы мезенхимальных стволовых клеток различного генеза, фибробластов, эндотелиоцитов, эпидермальных стволовых клеток. Их эффект различается на разных фазах ранозаживления. Экзосомы представляют гетерогенную группу нанообъектов с низким иммуногенным потенциалом, обладающих способностью оказывать выборочное влияние на механизмы и фазы заживления ран кожи как при классическом протекании фаз ранозаживления, так и при их нарушении. В трансляционной медицине биологические эффекты экзосом можно оптимизировать, подбирая клетку-источник, условия ее культивирования согласно поставленным задачам. Рассмотрены три подхода для повышения эффективности терапии экзосомами: подбор оптимального источника экзосом; модификация экзосом, прямая или опосредованная через клетки-источники; подбор лекарственной формы для оптимизации доставки экзосом. Наиболее перспективным раневым покрытием для инкапсуляции внеклеточных везикул является гидрогель, который повышает устойчивость экзосом и время их поступления в рану и обеспечивает синергетический эффект. Следовательно, гидрогели рассматриваются как наиболее предпочтительные для инкапсуляции экзосом при лечении ран, поскольку они демонстрируют синергическую связь своих ранозаживляющих эффектов с биологическими эффектами экзосом.
Полный текст

Об авторах
Владимир Владимирович Криштоп
Военно-медицинская академия им. С.М. Кирова
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-9267-5800
SPIN-код: 3734-5479
канд. мед. наук
Россия, Санкт-ПетербургАрина Александровна Кокорина
Военно-медицинская академия им. С.М. Кирова
Автор, ответственный за переписку.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-6783-3088
SPIN-код: 9371-3658
аспирант
Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6ЖВера Сергеевна Шевелева
Военно-медицинская академия им. С.М. Кирова
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1771-9014
SPIN-код: 8326-0165
биотехнолог
Россия, Санкт-ПетербургВалерий Леонтьевич Белевич
Военно-медицинская академия им. С.М. Кирова
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-7339-1220
SPIN-код: 9583-8993
д-р мед. наук
Россия, Санкт-ПетербургРуслан Иванович Глушаков
Военно-медицинская академия им. С.М. Кирова
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-0161-5977
SPIN-код: 6860-8990
д-р мед. наук, доцент
Россия, Санкт-ПетербургСписок литературы
- Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):1–41. doi: 10.1038/s41392-024-01735-1 EDN: EPOTHG
- Liu H, Su J. Organoid extracellular vesicle-based therapeutic strategies for bone therapy. Biomater Transl. 2023;4(4):199–212. doi: 10.12336/biomatertransl.2023.04.002
- Flaumenhaft R, Mairuhu AT, Italiano JE. Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost. 2010;36(8):881–887. doi: 10.1055/s-0030-1267042
- Mi B, Chen L, Xiong Y, et al. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6. J Nanobiotechnology. 2020;18(1):68. doi: 10.1186/s12951-020-00624-3 EDN: BHQJAV
- Chen CY, Rao SS, Ren L, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 2018;8(6):1607–23. doi: 10.7150/thno.22958
- Zhang B, Bi Y, Wang K, et al. Stem cell-derived extracellular vesicles: promising therapeutic opportunities for diabetic wound healing. Int J Nanomedicine. 2024;19:4357–4375. doi: 10.2147/IJN.S461342 EDN: NTHNIM
- Li Z, Liu J, Song J, et al. Multifunctional hydrogel-based engineered extracellular vesicles delivery for complicated wound healing. Theranostics. 2024;14(11):4198–4217. doi: 10.7150/thno.97317 EDN: OZYXLU
- Ovchinnikov DV, Ivchenko EV. Military medicine of modern hybrid wars. Bulletin of the Russian Military Medical Academy. 2024;43(3):331–340. doi: 10.17816/rmmar633158 EDN: EHVYUH
- Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2017;20(1):1–7. doi: 10.1208/s12248-017-0160-y EDN: TGOYIZ
- Foo JB, Looi QH, How CW, et al. Mesenchymal stem cell-derived exosomes and microRNAs in cartilage regeneration: biogenesis, efficacy, miRNA enrichment and delivery. Pharmaceuticals (Basel). 2021;14(11):1093. doi: 10.3390/ph14111093 EDN: LTJTBI
- Noren Hooten N, Yáñez-Mó M, DeRita R, et al. Hitting the bullseye: are extracellular vesicles on target? J Extracell Vesicles. 2020;10(1):e12032. doi: 10.1002/jev2.12032 EDN: IKHVZO
- Pomatto M, Gai C, Negro F, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int J Mol Sci. 2021;22(8):3851 doi: 10.3390/ijms22083851 EDN: EXOMAY
- Narauskaitė D, Vydmantaitė G, Rusteikaitė J, et al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel). 2021;14(8):811. doi: 10.3390/ph14080811
- Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am. 2011;19(3):441–453. doi: 10.1016/j.fsc.2011.06.009
- Gaivoronsky AI, Svistov DV, Kolomentsev SV, et al. Approach to neurosurgical care for combat-related injuries to the peripheral nervous system. Bulletin of the Russian Military Medical Academy. 2024;26(4):627–638. doi: 10.17816/brmma634434 EDN: YWXGLM
- Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. doi: 10.1152/physrev.00067.2017
- Lopez E, Srivastava AK, Burchfield J, et al. Platelet-derived-extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676. doi: 10.1038/s41598-019-53724-y EDN: TRZMHF
- Wang Y, Zhang S, Luo L, et al. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis. J Cell Physiol. 2018;233(2):1051–1060. doi: 10.1002/jcp.25959 EDN: DRJPSO
- Sorg H, Tilkorn DJ, Hager S, et al. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81–94. doi: 10.1159/000454919 EDN: YWMDRB
- Kalan L, Grice EA. Fungi in the Wound Microbiome. Adv Wound Care (New Rochelle). 2018;7(7):247–255. doi: 10.1089/wound.2017.0756
- Hassanshahi A, Moradzad M, Ghalamkari S, et al. Macrophage-mediated Inflammation in skin wound healing. Cells. 2022;11(19):2953. doi: 10.3390/cells11192953 EDN: LPMXWJ
- Zhao R, Liang H, Clarke E, et al. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085. doi: 10.3390/ijms17122085
- Shook B, Xiao E, Kumamoto Y, et al. CD301b + macrophages are essential for effective skin wound healing. J Invest Dermatol. 2016;136(9):1885–1891. doi: 10.1016/j.jid.2016.05.107
- Kolonics F, Kajdácsi E, Farkas VJ, et al. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J Leukoc Biol. 2021;109(4):793–806. doi: 10.1002/JLB.3A0320-210R EDN: XPREHL
- Kim H, Wang SY, Kwak G, et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 2019;6(20):1900513. doi: 10.1002/advs.201900513
- Iglin VA, Sokolovskaya OA, Morozova SM, et al. Effect of sol-gel alumina biocomposite on the viability and morphology of dermal human fibroblast cells. ACS Biomater Sci Eng. 2020;6(8):4397–4400. doi: 10.1021/acsbiomaterials.0c00721
- Wang PH, Huang BS, Horng HC, et al. Wound healing. J Chin Med Assoc. 2018;81(2):94–101. doi: 10.1016/j.jcma.2017.11.002
- Ding JY, Chen MJ, Wu LF, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36. doi: 10.1186/s40779-023-00472-w EDN: LVJSPG
- Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle). 2013;2(6):283–295. doi: 10.1089/wound.2012.0398
- Glady A, Vandebroek A, Yasui M. Human keratinocyte-derived extracellular vesicles activate the MAPKinase pathway and promote cell migration and proliferation in vitro. Inflamm Regen. 2021;41(1):4. doi: 10.1186/s41232-021-00154-x EDN: ISXWNG
- Han X, Wu P, Li L, et al. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle. 2021;20(5-6):616–629. doi: 10.1080/15384101.2021.1894813
- Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J Diabetes Complications. 2016;30(6):986–992. doi: 10.1016/j.jdiacomp.2016.05.009 EDN: YADWMT
- Zhang J, Chen C, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472–1487. doi: 10.7150/ijbs.15514
- Li M, Wang T, Tian H, et al. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 2019;47(1):3793–3803. doi: 10.1080/21691401.2019.1669617
- Gangadaran P, Rajendran RL, Oh JM, et al. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res. 2020;394(2):112146. doi: 10.1016/j.yexcr.2020.112146 EDN: HIBKNA
- Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. doi: 10.1111/iwj.12557 EDN: YXLEED
- Gould L, Abadir P, Brem H, et al. Chronic wound repair and healing in older adults: current status and future research. Wound Repair Regen. 2015;23(1):1–13. doi: 10.1111/wrr.12245 EDN: XQEOHZ
- Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615. doi: 10.1016/j.biopha.2019.108615
- Oh EJ, Gangadaran P, Rajendran RL, et al. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells. 2021;39(3):266–279. doi: 10.1002/stem.3310
- Arif S, Larochelle S, Moulin VJ. PLGF-1 contained in normal wound myofibroblast-derived microvesicles stimulated collagen production by dermal fibroblasts. J Cell Commun Signal. 2020;14(4):427–438. doi: 10.1007/s12079-020-00572-5 EDN: BDARLW
- De Jong OG, van Balkom BW, Gremmels H, Verhaar MC. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20(2):342–350. doi: 10.1111/jcmm.12730
- Marshall CD, Hu MS, Leavitt T, et al. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care (New Rochelle). 2018;7(2):29–45. doi: 10.1089/wound.2016.0696
- Wang P, Jiang LZ, Xue B. Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through down-regulation of VEGF and TIMP-1. Afr Health Sci. 2016;16(2):542–553. doi: 10.4314/ahs.v16i2.23
- Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, et al. Extracellular vesicle-based hydrogels for wound healing applications. Int J Mol Sci. 2023;24(4):4104. doi: 10.3390/ijms24044104 EDN: NWPPLI
- Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol. 2022;10:958381. doi: 10.3389/fbioe.2022.958381 EDN: PVRKCQ
- Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev. 2021;179:113913. doi: 10.1016/j.addr.2021.113913 EDN: TDBLBP
- Zhou X, Brown BA, Siegel AP, et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano. 2020;14(10):12732–12748. doi: 10.1021/acsnano.0c03064
- Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229. doi: 10.1177/0022034509359125
- Silachev DN, Goryunov KV, Shpilyuk MA, et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells. 2019;8(3):258. doi: 10.3390/cells8030258 EDN: LHZXPB
- Lee JH, Jung H, Song J, et al. Activated platelet-derived vesicles for efficient hemostatic activity. Macromol Biosci. 2020;20(3):e1900338. doi: 10.1002/mabi.201900338
- Henriques-Antunes H, Cardoso RMS, Zonari A, et al. The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration. ACS Nano. 2019;13(8):8694–8707. doi: 10.1021/acsnano.9b00376
- Sjöqvist S, Ishikawa T, Shimura D, et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles. 2019;8(1):1565264. doi: 10.1080/20013078.2019.1565264
- Al-Masawa ME, Alshawsh MA, Ng CY, et al. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics. 2022;12(15):6455–6508. doi: 10.7150/thno.73436 EDN: SMRICA
- Zhang B, Wang M, Gong A, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing [published correction appears in Stem Cells. 2021;39(12):E5. doi: 10.1002/stem.3466]. Stem Cells. 2015;33(7):2158–2168. doi: 10.1002/stem.1771
- Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49. doi: 10.1186/s12967-015-0417-0 EDN: RUGGHA
- Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med. 2016;5(10):1425–1439. doi: 10.5966/sctm.2015-0367
- Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [published correction appears in Sci Rep. 2020;10(1):6693. EDN: XHYYCP doi: 10.1038/s41598-020-63068-7]. Sci Rep. 2016;6:32993. doi: 10.1038/srep32993
- Ferreira ADF, Cunha PDS, Carregal VM, et al. Extracellular vesicles from adipose-derived mesenchymal stem/stromal cells accelerate migration and activate AKT pathway in human keratinocytes and fibroblasts independently of miR-205 activity. Stem Cells Int. 2017;2017:9841035. doi: 10.1155/2017/9841035
- Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling [published correction appears in Sci Rep. 2018;8(1):7066. doi: 10.1038/s41598-018-24991-y] [published correction appears in Sci Rep. 2021;11(1):3245. doi: 10.1038/s41598-021-82225-0]. Sci Rep. 2017;7(1):13321. doi: 10.1038/s41598-017-12919-x
- Zhao B, Zhang Y, Han S, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol. 2017;48(2):121–132. doi: 10.1007/s10735-017-9711-x EDN: VNWPMC
- Lu M, Peng L, Ming X, et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine. 2019;42:443–457. doi: 10.1016/j.ebiom.2019.03.011
- Qin S, Dorschner RA, Masini I, et al. TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair. FASEB J. 2019;33(5):6129–6139. doi: 10.1096/fj.201802388R
- Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J Biomed Mater Res A. 2020;108(3):545–556. doi: 10.1002/jbm.a.36835 EDN: NZZFTH
- Wang X, Jiao Y, Pan Y, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;2019:2402916. doi: 10.1155/2019/2402916
- Dong J, Wu Y, Zhang Y, Yu M, Tian W. Comparison of the therapeutic effect of allogeneic and xenogeneic small extracellular vesicles in soft tissue repair. Int J Nanomedicine. 2020;15:6975–6991. doi: 10.2147/IJN.S269069
- Duan M, Zhang Y, Zhang H, et al. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther. 2020;11(1):452. doi: 10.1186/s13287-020-01971-6 EDN: CVQIRM
- Hettich BF, Ben-Yehuda Greenwald M, Werner S, Leroux JC. Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh). 2020;7(23):2002596. doi: 10.1002/advs.202002596 EDN: ZPXHLA
- Jiang L, Zhang Y, Liu T, et al. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie. 2020;177:40–49. doi: 10.1016/j.biochi.2020.08.003 EDN: UUPSHO
- Liu J, Yan Z, Yang F, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Rev Rep. 2021;17(2):305–317. doi: 10.1007/s12015-020-09992-7
- Nooshabadi VT, Khanmohamadi M, Valipour E, et al. Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res A. 2020;108(11):2138–2149. doi: 10.1002/jbm.a.36959
- Parvanian S, Yan F, Su D, et al. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken). 2020;77(10):399–413. doi: 10.1002/cm.21634
- Su D, Tsai HI, Xu Z, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9(1):1709262. doi: 10.1080/20013078.2019.1709262
- Wu D, Kang L, Tian J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine. 2020;15:7979–7993. doi: 10.2147/IJN.S275650
- Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys. 2020;681:108259. doi: 10.1016/j.abb.2020.108259
- Zhao G, Liu F, Liu Z, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11(1):174. doi: 10.1186/s13287-020-01616-8 EDN: IVCYBY
- Dad HA, Gu TW, Zhu AQ, et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13–31. doi: 10.1016/j.ymthe.2020.11.030 EDN: OIGOUU
- Xu Z, Xu Y, Zhang K, et al. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology. 2023;21(1):114. doi: 10.1186/s12951-023-01858-7 EDN: OQHCNS
- Kim M, Jang H, Kim W, et al. Therapeutic applications of plant-derived extracellular vesicles as antioxidants for oxidative stress-related diseases. Antioxidants (Basel). 2023;12(6):1286. doi: 10.3390/antiox12061286 EDN: TNYECW
- Savcı Y, Kırbaş OK, Bozkurt BT, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021;12(11):5144–5156. doi: 10.1039/d0fo02953j EDN: LXDEUA
- Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, et al. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct. 2022;13(24):12870–12882. doi: 10.1039/d2fo01806c EDN: NZAARQ
- Kim MK, Choi YC, Cho SH, et al. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18(4):561–571. doi: 10.1007/s13770-021-00367-8 EDN: CKECGR
- Şahin F, Koçak P, Güneş MY, et al. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188(2):381–394. doi: 10.1007/s12010-018-2913-1 EDN: CCAWEN
- Sarcinella A, Femminò S, Brizzi MF. Extracellular vesicles: emergent and multiple sources in wound healing treatment. Int J Mol Sci. 2023;24(21):15709. doi: 10.3390/ijms242115709 EDN: SZYVYB
- Wang C, Stöckl S, Li S, et al. Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of naïve human BMSCs. Cells. 2022;11(16):2491. doi: 10.3390/cells11162491 EDN: BQLBRP
- Liu A, Lin D, Zhao H, et al. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair. Biomaterials. 2021;272:120718. doi: 10.1016/j.biomaterials.2021.120718 EDN: JWKKEV
- Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis [published correction appears in J Nanobiotechnology. 2023;21(1):217. doi: 10.1186/s12951-023-01978-0]. J Nanobiotechnology. 2021;19(1):209 doi: 10.1186/s12951-021-00958-6 EDN: BXCOCB
- Cheung T, Wu S. Extracellular vesicles in diabetic wound healing. Podiatry Management. 2022;89–97
- Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R [published correction appears in Int J Biochem Cell Biol. 2020;126:105805. doi: 10.1016/j.biocel.2020.105805]. Int J Biochem Cell Biol. 2019;109:59–68. doi: 10.1016/j.biocel.2019.01.017
- Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259. doi: 10.1186/s13287-020-01756-x EDN: HWOJIM
- Hu Y, Tao R, Chen L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology. 2021;19(1):150. doi: 10.1186/s12951-021-00894-5 EDN: DGKYWI
- Shi A, Li J, Qiu X, et al. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics. 2021;11(13):6616–6631. doi: 10.7150/thno.57701 EDN: GOMBSV
- Li X, Wang Y, Shi L, et al. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology. 2020;18(1):113. doi: 10.1186/s12951-020-00670-x EDN: LHOTMX
- Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics. 2019;9(6):1714–1727. doi: 10.7150/thno.30716 EDN: CDBFTN
- Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–2390. doi: 10.1016/j.biomaterials.2013.11.083
- Gao X, Ran N, Dong X, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy [published correction appears in Sci Transl Med. 2018;10(469):eaaw0534. doi: 10.1126/scitranslmed.aaw0534]. Sci Transl Med. 2018;10(444):eaat0195. doi: 10.1126/scitranslmed.aat0195 EDN: YHJYVV
- Charoenviriyakul C, Takahashi Y, Morishita M, et al. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci. 2017;96:316–322. doi: 10.1016/j.ejps.2016.10.009
- Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4(1):26316. doi: 10.3402/jev.v4.26316 EDN: TCJZKF
- Abolgheit S, Abdelkader S, Aboushelib M, et al. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36(1):128–139. doi: 10.1177/0885328220963920
- Zhu W, Dong Y, Xu P, et al. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022;154:212–230. doi: 10.1016/j.actbio.2022.10.038 EDN: PYBBYA
- Chabria Y, Duffy GP, Lowery AJ, Dwyer RM. Hydrogels: 3D drug delivery systems for nanoparticles and extracellular vesicles. Biomedicines. 2021;9(11):1694. doi: 10.3390/biomedicines9111694 EDN: UNXQIH
- Xu L, Liu Y, Tang L, et al. Preparation of recombinant human collagen III protein hydrogels with sustained release of extracellular vesicles for skin wound healing. Int J Mol Sci. 2022;23(11):6289. doi: 10.3390/ijms23116289 EDN: JUFNVC
- Trenkenschuh E, Richter M, Heinrich E, et al. Enhancing the stabilization potential of lyophilization for extracellular vesicles. Adv Healthc Mater. 2022;11(5):e2100538 doi: 10.1002/adhm.202100538 EDN: TYDRDY
- Yang J, Chen Z, Pan D, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine. 2020;15:5911–5926. doi: 10.2147/IJN.S249129
- Ju Y, Hu Y, Yang P, et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2022;18:100522. doi: 10.1016/j.mtbio.2022.100522 EDN: MWYK
- Sun M, Li Q, Yu H, et al. Cryo-self-assembled silk fibroin sponge as a biodegradable platform for enzyme-responsive delivery of exosomes. Bioact Mater. 2021;8:505–514. doi: 10.1016/j.bioactmat.2021.06.017 EDN: VEZYRY
- Wichterle O, Lìm D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. doi: 10.1038/185117a0
- Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. Eur J Pharm Biopharm. 2022;171:50–59. doi: 10.1016/j.ejpb.2021.11.002 EDN: VZYQCS
- Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater. 2022;11(16):e2200494. doi: 10.1002/adhm.202200494
- Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology. 2024;22(1):57. doi: 10.1186/s12951-024-02315-9 EDN: XBDXWX
- Wu K, He C, Wu Y, et al. Preservation of small extracellular vesicle in gelatin methacryloyl hydrogel through reduced particles aggregation for therapeutic applications. Int J Nanomedicine. 2021;16:7831–7846. doi: 10.2147/IJN.S334194 EDN: OHJZLC
- Qian Z, Bai Y, Zhou J, et al. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B. 2020;8(32):7197–7212. doi: 10.1039/d0tb01100b
- Shen Y, Xu G, Huang H, et al. Sequential release of small extracellular vesicles from bilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing. ACS Nano. 2021;15(4):6352–6368. doi: 10.1021/acsnano.0c07714 EDN: DXUOYA
- Tao SC, Guo SC, Li M, et al. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736–747. doi: 10.5966/sctm.2016-0275 EDN: YYJXOZ
- Guo SC, Tao SC, Yin WJ, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96. doi: 10.7150/thno.16803 EDN: YWVTFD
- Hao D, Lu L, Song H, et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics. 2022;12(13):6021–6037. doi: 10.7150/thno.70448 EDN: WHPVFY
- Jorgensen AM, Chou Z, Gillispie G, et al. Decellularized skin extracellular matrix (dsECM) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications. Nanomaterials (Basel). 2020;10(8):1484. doi: 10.3390/nano10081484 EDN: TZWQZY
- Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Glob Open. 2015;3(1):e284. doi: 10.1097/GOX.0000000000000219
- Sun Y, Zhang J, Chen B, et al. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence. J Mater Sci Technol. 2021;63:216–227. doi: 10.1016/j.jmst.2020.03.014 EDN: LNHXJH
- Bakhtyar N, Jeschke MG, Herer E, et al. Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther. 2018;9(1):193. doi: 10.1186/s13287-018-0921-2
- Garima Sharma D, Kumar A, Mostafavi E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. Mol Ther Nucleic Acids. 2023;32:822–840. doi: 10.1016/j.omtn.2023.05.002 EDN: VLUKDF
Дополнительные файлы
