Участие внеклеточных везикул в заживлении ран

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Близость терапевтического воздействия эффектам клеточной терапии, а также высокая биосовместимость, низкая токсичность и иммуногенность экзосом делают их оптимальными кандидатами для исследований в регенеративной медицине и в частности в области ранозаживления. Анализируются данные о биологических эффектах экзосом на разных фазах ранозаживления у лабораторных животных. Результаты литературного анализа демонстрируют участие нативных экзосом во всех фазах ранозаживления. При гемостазе их источником являются преимущественно тромбоциты, в воспалительной фазе — нейтрофилы и моноциты, в пролиферативной фазе — кератиноциты, фибробласты, эндотелиоциты. Наибольшим терапевтическим потенциалом при экспериментальном лечении неосложненных ран кожи обладают экзосомы мезенхимальных стволовых клеток различного генеза, фибробластов, эндотелиоцитов, эпидермальных стволовых клеток. Их эффект различается на разных фазах ранозаживления. Экзосомы представляют гетерогенную группу нанообъектов с низким иммуногенным потенциалом, обладающих способностью оказывать выборочное влияние на механизмы и фазы заживления ран кожи как при классическом протекании фаз ранозаживления, так и при их нарушении. В трансляционной медицине биологические эффекты экзосом можно оптимизировать, подбирая клетку-источник, условия ее культивирования согласно поставленным задачам. Рассмотрены три подхода для повышения эффективности терапии экзосомами: подбор оптимального источника экзосом; модификация экзосом, прямая или опосредованная через клетки-источники; подбор лекарственной формы для оптимизации доставки экзосом. Наиболее перспективным раневым покрытием для инкапсуляции внеклеточных везикул является гидрогель, который повышает устойчивость экзосом и время их поступления в рану и обеспечивает синергетический эффект. Следовательно, гидрогели рассматриваются как наиболее предпочтительные для инкапсуляции экзосом при лечении ран, поскольку они демонстрируют синергическую связь своих ранозаживляющих эффектов с биологическими эффектами экзосом.

Полный текст

Доступ закрыт

Об авторах

Владимир Владимирович Криштоп

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-9267-5800
SPIN-код: 3734-5479

канд. мед. наук

Россия, Санкт-Петербург

Арина Александровна Кокорина

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-6783-3088
SPIN-код: 9371-3658

аспирант

Россия, 194044, Санкт-Петербург, ул. Академика Лебедева, д. 6Ж

Вера Сергеевна Шевелева

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-1771-9014
SPIN-код: 8326-0165

биотехнолог

Россия, Санкт-Петербург

Валерий Леонтьевич Белевич

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-7339-1220
SPIN-код: 9583-8993

д-р мед. наук

Россия, Санкт-Петербург

Руслан Иванович Глушаков

Военно-медицинская академия им. С.М. Кирова

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-0161-5977
SPIN-код: 6860-8990

д-р мед. наук, доцент

Россия, Санкт-Петербург

Список литературы

  1. Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther. 2024;9(1):1–41. doi: 10.1038/s41392-024-01735-1 EDN: EPOTHG
  2. Liu H, Su J. Organoid extracellular vesicle-based therapeutic strategies for bone therapy. Biomater Transl. 2023;4(4):199–212. doi: 10.12336/biomatertransl.2023.04.002
  3. Flaumenhaft R, Mairuhu AT, Italiano JE. Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost. 2010;36(8):881–887. doi: 10.1055/s-0030-1267042
  4. Mi B, Chen L, Xiong Y, et al. Saliva exosomes-derived UBE2O mRNA promotes angiogenesis in cutaneous wounds by targeting SMAD6. J Nanobiotechnology. 2020;18(1):68. doi: 10.1186/s12951-020-00624-3 EDN: BHQJAV
  5. Chen CY, Rao SS, Ren L, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 2018;8(6):1607–23. doi: 10.7150/thno.22958
  6. Zhang B, Bi Y, Wang K, et al. Stem cell-derived extracellular vesicles: promising therapeutic opportunities for diabetic wound healing. Int J Nanomedicine. 2024;19:4357–4375. doi: 10.2147/IJN.S461342 EDN: NTHNIM
  7. Li Z, Liu J, Song J, et al. Multifunctional hydrogel-based engineered extracellular vesicles delivery for complicated wound healing. Theranostics. 2024;14(11):4198–4217. doi: 10.7150/thno.97317 EDN: OZYXLU
  8. Ovchinnikov DV, Ivchenko EV. Military medicine of modern hybrid wars. Bulletin of the Russian Military Medical Academy. 2024;43(3):331–340. doi: 10.17816/rmmar633158 EDN: EHVYUH
  9. Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2017;20(1):1–7. doi: 10.1208/s12248-017-0160-y EDN: TGOYIZ
  10. Foo JB, Looi QH, How CW, et al. Mesenchymal stem cell-derived exosomes and microRNAs in cartilage regeneration: biogenesis, efficacy, miRNA enrichment and delivery. Pharmaceuticals (Basel). 2021;14(11):1093. doi: 10.3390/ph14111093 EDN: LTJTBI
  11. Noren Hooten N, Yáñez-Mó M, DeRita R, et al. Hitting the bullseye: are extracellular vesicles on target? J Extracell Vesicles. 2020;10(1):e12032. doi: 10.1002/jev2.12032 EDN: IKHVZO
  12. Pomatto M, Gai C, Negro F, et al. Differential therapeutic effect of extracellular vesicles derived by bone marrow and adipose mesenchymal stem cells on wound healing of diabetic ulcers and correlation to their cargoes. Int J Mol Sci. 2021;22(8):3851 doi: 10.3390/ijms22083851 EDN: EXOMAY
  13. Narauskaitė D, Vydmantaitė G, Rusteikaitė J, et al. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel). 2021;14(8):811. doi: 10.3390/ph14080811
  14. Gantwerker EA, Hom DB. Skin: histology and physiology of wound healing. Facial Plast Surg Clin North Am. 2011;19(3):441–453. doi: 10.1016/j.fsc.2011.06.009
  15. Gaivoronsky AI, Svistov DV, Kolomentsev SV, et al. Approach to neurosurgical care for combat-related injuries to the peripheral nervous system. Bulletin of the Russian Military Medical Academy. 2024;26(4):627–638. doi: 10.17816/brmma634434 EDN: YWXGLM
  16. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. doi: 10.1152/physrev.00067.2017
  17. Lopez E, Srivastava AK, Burchfield J, et al. Platelet-derived-extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676. doi: 10.1038/s41598-019-53724-y EDN: TRZMHF
  18. Wang Y, Zhang S, Luo L, et al. Platelet-derived microparticles regulates thrombin generation via phophatidylserine in abdominal sepsis. J Cell Physiol. 2018;233(2):1051–1060. doi: 10.1002/jcp.25959 EDN: DRJPSO
  19. Sorg H, Tilkorn DJ, Hager S, et al. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81–94. doi: 10.1159/000454919 EDN: YWMDRB
  20. Kalan L, Grice EA. Fungi in the Wound Microbiome. Adv Wound Care (New Rochelle). 2018;7(7):247–255. doi: 10.1089/wound.2017.0756
  21. Hassanshahi A, Moradzad M, Ghalamkari S, et al. Macrophage-mediated Inflammation in skin wound healing. Cells. 2022;11(19):2953. doi: 10.3390/cells11192953 EDN: LPMXWJ
  22. Zhao R, Liang H, Clarke E, et al. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085. doi: 10.3390/ijms17122085
  23. Shook B, Xiao E, Kumamoto Y, et al. CD301b + macrophages are essential for effective skin wound healing. J Invest Dermatol. 2016;136(9):1885–1891. doi: 10.1016/j.jid.2016.05.107
  24. Kolonics F, Kajdácsi E, Farkas VJ, et al. Neutrophils produce proinflammatory or anti-inflammatory extracellular vesicles depending on the environmental conditions. J Leukoc Biol. 2021;109(4):793–806. doi: 10.1002/JLB.3A0320-210R EDN: XPREHL
  25. Kim H, Wang SY, Kwak G, et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh). 2019;6(20):1900513. doi: 10.1002/advs.201900513
  26. Iglin VA, Sokolovskaya OA, Morozova SM, et al. Effect of sol-gel alumina biocomposite on the viability and morphology of dermal human fibroblast cells. ACS Biomater Sci Eng. 2020;6(8):4397–4400. doi: 10.1021/acsbiomaterials.0c00721
  27. Wang PH, Huang BS, Horng HC, et al. Wound healing. J Chin Med Assoc. 2018;81(2):94–101. doi: 10.1016/j.jcma.2017.11.002
  28. Ding JY, Chen MJ, Wu LF, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36. doi: 10.1186/s40779-023-00472-w EDN: LVJSPG
  29. Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle). 2013;2(6):283–295. doi: 10.1089/wound.2012.0398
  30. Glady A, Vandebroek A, Yasui M. Human keratinocyte-derived extracellular vesicles activate the MAPKinase pathway and promote cell migration and proliferation in vitro. Inflamm Regen. 2021;41(1):4. doi: 10.1186/s41232-021-00154-x EDN: ISXWNG
  31. Han X, Wu P, Li L, et al. Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway. Cell Cycle. 2021;20(5-6):616–629. doi: 10.1080/15384101.2021.1894813
  32. Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J Diabetes Complications. 2016;30(6):986–992. doi: 10.1016/j.jdiacomp.2016.05.009 EDN: YADWMT
  33. Zhang J, Chen C, Hu B, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016;12(12):1472–1487. doi: 10.7150/ijbs.15514
  34. Li M, Wang T, Tian H, et al. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells Nanomed Biotechnol. 2019;47(1):3793–3803. doi: 10.1080/21691401.2019.1669617
  35. Gangadaran P, Rajendran RL, Oh JM, et al. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res. 2020;394(2):112146. doi: 10.1016/j.yexcr.2020.112146 EDN: HIBKNA
  36. Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89–96. doi: 10.1111/iwj.12557 EDN: YXLEED
  37. Gould L, Abadir P, Brem H, et al. Chronic wound repair and healing in older adults: current status and future research. Wound Repair Regen. 2015;23(1):1–13. doi: 10.1111/wrr.12245 EDN: XQEOHZ
  38. Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 2019;112:108615. doi: 10.1016/j.biopha.2019.108615
  39. Oh EJ, Gangadaran P, Rajendran RL, et al. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells. 2021;39(3):266–279. doi: 10.1002/stem.3310
  40. Arif S, Larochelle S, Moulin VJ. PLGF-1 contained in normal wound myofibroblast-derived microvesicles stimulated collagen production by dermal fibroblasts. J Cell Commun Signal. 2020;14(4):427–438. doi: 10.1007/s12079-020-00572-5 EDN: BDARLW
  41. De Jong OG, van Balkom BW, Gremmels H, Verhaar MC. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2. J Cell Mol Med. 2016;20(2):342–350. doi: 10.1111/jcmm.12730
  42. Marshall CD, Hu MS, Leavitt T, et al. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care (New Rochelle). 2018;7(2):29–45. doi: 10.1089/wound.2016.0696
  43. Wang P, Jiang LZ, Xue B. Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through down-regulation of VEGF and TIMP-1. Afr Health Sci. 2016;16(2):542–553. doi: 10.4314/ahs.v16i2.23
  44. Amengual-Tugores AM, Ráez-Meseguer C, Forteza-Genestra MA, et al. Extracellular vesicle-based hydrogels for wound healing applications. Int J Mol Sci. 2023;24(4):4104. doi: 10.3390/ijms24044104 EDN: NWPPLI
  45. Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol. 2022;10:958381. doi: 10.3389/fbioe.2022.958381 EDN: PVRKCQ
  46. Villarreal-Leal RA, Healey GD, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Adv Drug Deliv Rev. 2021;179:113913. doi: 10.1016/j.addr.2021.113913 EDN: TDBLBP
  47. Zhou X, Brown BA, Siegel AP, et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano. 2020;14(10):12732–12748. doi: 10.1021/acsnano.0c03064
  48. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–229. doi: 10.1177/0022034509359125
  49. Silachev DN, Goryunov KV, Shpilyuk MA, et al. Effect of MSCs and MSC-derived extracellular vesicles on human blood coagulation. Cells. 2019;8(3):258. doi: 10.3390/cells8030258 EDN: LHZXPB
  50. Lee JH, Jung H, Song J, et al. Activated platelet-derived vesicles for efficient hemostatic activity. Macromol Biosci. 2020;20(3):e1900338. doi: 10.1002/mabi.201900338
  51. Henriques-Antunes H, Cardoso RMS, Zonari A, et al. The kinetics of small extracellular vesicle delivery impacts skin tissue regeneration. ACS Nano. 2019;13(8):8694–8707. doi: 10.1021/acsnano.9b00376
  52. Sjöqvist S, Ishikawa T, Shimura D, et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J Extracell Vesicles. 2019;8(1):1565264. doi: 10.1080/20013078.2019.1565264
  53. Al-Masawa ME, Alshawsh MA, Ng CY, et al. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: A systematic review and meta-analysis of animal studies. Theranostics. 2022;12(15):6455–6508. doi: 10.7150/thno.73436 EDN: SMRICA
  54. Zhang B, Wang M, Gong A, et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing [published correction appears in Stem Cells. 2021;39(12):E5. doi: 10.1002/stem.3466]. Stem Cells. 2015;33(7):2158–2168. doi: 10.1002/stem.1771
  55. Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med. 2015;13:49. doi: 10.1186/s12967-015-0417-0 EDN: RUGGHA
  56. Fang S, Xu C, Zhang Y, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-β/SMAD2 pathway during wound healing. Stem Cells Transl Med. 2016;5(10):1425–1439. doi: 10.5966/sctm.2015-0367
  57. Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts [published correction appears in Sci Rep. 2020;10(1):6693. EDN: XHYYCP doi: 10.1038/s41598-020-63068-7]. Sci Rep. 2016;6:32993. doi: 10.1038/srep32993
  58. Ferreira ADF, Cunha PDS, Carregal VM, et al. Extracellular vesicles from adipose-derived mesenchymal stem/stromal cells accelerate migration and activate AKT pathway in human keratinocytes and fibroblasts independently of miR-205 activity. Stem Cells Int. 2017;2017:9841035. doi: 10.1155/2017/9841035
  59. Wang L, Hu L, Zhou X, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling [published correction appears in Sci Rep. 2018;8(1):7066. doi: 10.1038/s41598-018-24991-y] [published correction appears in Sci Rep. 2021;11(1):3245. doi: 10.1038/s41598-021-82225-0]. Sci Rep. 2017;7(1):13321. doi: 10.1038/s41598-017-12919-x
  60. Zhao B, Zhang Y, Han S, et al. Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol. 2017;48(2):121–132. doi: 10.1007/s10735-017-9711-x EDN: VNWPMC
  61. Lu M, Peng L, Ming X, et al. Enhanced wound healing promotion by immune response-free monkey autologous iPSCs and exosomes vs. their allogeneic counterparts. EBioMedicine. 2019;42:443–457. doi: 10.1016/j.ebiom.2019.03.011
  62. Qin S, Dorschner RA, Masini I, et al. TBC1D3 regulates the payload and biological activity of extracellular vesicles that mediate tissue repair. FASEB J. 2019;33(5):6129–6139. doi: 10.1096/fj.201802388R
  63. Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. J Biomed Mater Res A. 2020;108(3):545–556. doi: 10.1002/jbm.a.36835 EDN: NZZFTH
  64. Wang X, Jiao Y, Pan Y, et al. Fetal dermal mesenchymal stem cell-derived exosomes accelerate cutaneous wound healing by activating notch signaling. Stem Cells Int. 2019;2019:2402916. doi: 10.1155/2019/2402916
  65. Dong J, Wu Y, Zhang Y, Yu M, Tian W. Comparison of the therapeutic effect of allogeneic and xenogeneic small extracellular vesicles in soft tissue repair. Int J Nanomedicine. 2020;15:6975–6991. doi: 10.2147/IJN.S269069
  66. Duan M, Zhang Y, Zhang H, et al. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther. 2020;11(1):452. doi: 10.1186/s13287-020-01971-6 EDN: CVQIRM
  67. Hettich BF, Ben-Yehuda Greenwald M, Werner S, Leroux JC. Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh). 2020;7(23):2002596. doi: 10.1002/advs.202002596 EDN: ZPXHLA
  68. Jiang L, Zhang Y, Liu T, et al. Exosomes derived from TSG-6 modified mesenchymal stromal cells attenuate scar formation during wound healing. Biochimie. 2020;177:40–49. doi: 10.1016/j.biochi.2020.08.003 EDN: UUPSHO
  69. Liu J, Yan Z, Yang F, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Rev Rep. 2021;17(2):305–317. doi: 10.1007/s12015-020-09992-7
  70. Nooshabadi VT, Khanmohamadi M, Valipour E, et al. Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res A. 2020;108(11):2138–2149. doi: 10.1002/jbm.a.36959
  71. Parvanian S, Yan F, Su D, et al. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken). 2020;77(10):399–413. doi: 10.1002/cm.21634
  72. Su D, Tsai HI, Xu Z, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2019;9(1):1709262. doi: 10.1080/20013078.2019.1709262
  73. Wu D, Kang L, Tian J, et al. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine. 2020;15:7979–7993. doi: 10.2147/IJN.S275650
  74. Yang C, Luo L, Bai X, et al. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys. 2020;681:108259. doi: 10.1016/j.abb.2020.108259
  75. Zhao G, Liu F, Liu Z, et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11(1):174. doi: 10.1186/s13287-020-01616-8 EDN: IVCYBY
  76. Dad HA, Gu TW, Zhu AQ, et al. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther. 2021;29(1):13–31. doi: 10.1016/j.ymthe.2020.11.030 EDN: OIGOUU
  77. Xu Z, Xu Y, Zhang K, et al. Plant-derived extracellular vesicles (PDEVs) in nanomedicine for human disease and therapeutic modalities. J Nanobiotechnology. 2023;21(1):114. doi: 10.1186/s12951-023-01858-7 EDN: OQHCNS
  78. Kim M, Jang H, Kim W, et al. Therapeutic applications of plant-derived extracellular vesicles as antioxidants for oxidative stress-related diseases. Antioxidants (Basel). 2023;12(6):1286. doi: 10.3390/antiox12061286 EDN: TNYECW
  79. Savcı Y, Kırbaş OK, Bozkurt BT, et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 2021;12(11):5144–5156. doi: 10.1039/d0fo02953j EDN: LXDEUA
  80. Sánchez-López CM, Manzaneque-López MC, Pérez-Bermúdez P, et al. Characterization and bioactivity of extracellular vesicles isolated from pomegranate. Food Funct. 2022;13(24):12870–12882. doi: 10.1039/d2fo01806c EDN: NZAARQ
  81. Kim MK, Choi YC, Cho SH, et al. The antioxidant effect of small extracellular vesicles derived from aloe vera peels for wound healing. Tissue Eng Regen Med. 2021;18(4):561–571. doi: 10.1007/s13770-021-00367-8 EDN: CKECGR
  82. Şahin F, Koçak P, Güneş MY, et al. In vitro wound healing activity of wheat-derived nanovesicles. Appl Biochem Biotechnol. 2019;188(2):381–394. doi: 10.1007/s12010-018-2913-1 EDN: CCAWEN
  83. Sarcinella A, Femminò S, Brizzi MF. Extracellular vesicles: emergent and multiple sources in wound healing treatment. Int J Mol Sci. 2023;24(21):15709. doi: 10.3390/ijms242115709 EDN: SZYVYB
  84. Wang C, Stöckl S, Li S, et al. Effects of extracellular vesicles from osteogenic differentiated human BMSCs on osteogenic and adipogenic differentiation capacity of naïve human BMSCs. Cells. 2022;11(16):2491. doi: 10.3390/cells11162491 EDN: BQLBRP
  85. Liu A, Lin D, Zhao H, et al. Optimized BMSC-derived osteoinductive exosomes immobilized in hierarchical scaffold via lyophilization for bone repair. Biomaterials. 2021;272:120718. doi: 10.1016/j.biomaterials.2021.120718 EDN: JWKKEV
  86. Wu D, Chang X, Tian J, et al. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis [published correction appears in J Nanobiotechnology. 2023;21(1):217. doi: 10.1186/s12951-023-01978-0]. J Nanobiotechnology. 2021;19(1):209 doi: 10.1186/s12951-021-00958-6 EDN: BXCOCB
  87. Cheung T, Wu S. Extracellular vesicles in diabetic wound healing. Podiatry Management. 2022;89–97
  88. Han Y, Ren J, Bai Y, et al. Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R [published correction appears in Int J Biochem Cell Biol. 2020;126:105805. doi: 10.1016/j.biocel.2020.105805]. Int J Biochem Cell Biol. 2019;109:59–68. doi: 10.1016/j.biocel.2019.01.017
  89. Liu W, Yu M, Xie D, et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):259. doi: 10.1186/s13287-020-01756-x EDN: HWOJIM
  90. Hu Y, Tao R, Chen L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology. 2021;19(1):150. doi: 10.1186/s12951-021-00894-5 EDN: DGKYWI
  91. Shi A, Li J, Qiu X, et al. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics. 2021;11(13):6616–6631. doi: 10.7150/thno.57701 EDN: GOMBSV
  92. Li X, Wang Y, Shi L, et al. Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology. 2020;18(1):113. doi: 10.1186/s12951-020-00670-x EDN: LHOTMX
  93. Wang P, Wang H, Huang Q, et al. Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics. 2019;9(6):1714–1727. doi: 10.7150/thno.30716 EDN: CDBFTN
  94. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–2390. doi: 10.1016/j.biomaterials.2013.11.083
  95. Gao X, Ran N, Dong X, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy [published correction appears in Sci Transl Med. 2018;10(469):eaaw0534. doi: 10.1126/scitranslmed.aaw0534]. Sci Transl Med. 2018;10(444):eaat0195. doi: 10.1126/scitranslmed.aat0195 EDN: YHJYVV
  96. Charoenviriyakul C, Takahashi Y, Morishita M, et al. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci. 2017;96:316–322. doi: 10.1016/j.ejps.2016.10.009
  97. Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4(1):26316. doi: 10.3402/jev.v4.26316 EDN: TCJZKF
  98. Abolgheit S, Abdelkader S, Aboushelib M, et al. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model). J Biomater Appl. 2021;36(1):128–139. doi: 10.1177/0885328220963920
  99. Zhu W, Dong Y, Xu P, et al. A composite hydrogel containing resveratrol-laden nanoparticles and platelet-derived extracellular vesicles promotes wound healing in diabetic mice. Acta Biomater. 2022;154:212–230. doi: 10.1016/j.actbio.2022.10.038 EDN: PYBBYA
  100. Chabria Y, Duffy GP, Lowery AJ, Dwyer RM. Hydrogels: 3D drug delivery systems for nanoparticles and extracellular vesicles. Biomedicines. 2021;9(11):1694. doi: 10.3390/biomedicines9111694 EDN: UNXQIH
  101. Xu L, Liu Y, Tang L, et al. Preparation of recombinant human collagen III protein hydrogels with sustained release of extracellular vesicles for skin wound healing. Int J Mol Sci. 2022;23(11):6289. doi: 10.3390/ijms23116289 EDN: JUFNVC
  102. Trenkenschuh E, Richter M, Heinrich E, et al. Enhancing the stabilization potential of lyophilization for extracellular vesicles. Adv Healthc Mater. 2022;11(5):e2100538 doi: 10.1002/adhm.202100538 EDN: TYDRDY
  103. Yang J, Chen Z, Pan D, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine. 2020;15:5911–5926. doi: 10.2147/IJN.S249129
  104. Ju Y, Hu Y, Yang P, et al. Extracellular vesicle-loaded hydrogels for tissue repair and regeneration. Mater Today Bio. 2022;18:100522. doi: 10.1016/j.mtbio.2022.100522 EDN: MWYK
  105. Sun M, Li Q, Yu H, et al. Cryo-self-assembled silk fibroin sponge as a biodegradable platform for enzyme-responsive delivery of exosomes. Bioact Mater. 2021;8:505–514. doi: 10.1016/j.bioactmat.2021.06.017 EDN: VEZYRY
  106. Wichterle O, Lìm D. Hydrophilic gels for biological use. Nature. 1960;185:117–118. doi: 10.1038/185117a0
  107. Safari B, Aghazadeh M, Davaran S, Roshangar L. Exosome-loaded hydrogels: a new cell-free therapeutic approach for skin regeneration. Eur J Pharm Biopharm. 2022;171:50–59. doi: 10.1016/j.ejpb.2021.11.002 EDN: VZYQCS
  108. Xu Y, Chen H, Fang Y, Wu J. Hydrogel combined with phototherapy in wound healing. Adv Healthc Mater. 2022;11(16):e2200494. doi: 10.1002/adhm.202200494
  109. Zheng Y, Pan C, Xu P, Liu K. Hydrogel-mediated extracellular vesicles for enhanced wound healing: the latest progress, and their prospects for 3D bioprinting. J Nanobiotechnology. 2024;22(1):57. doi: 10.1186/s12951-024-02315-9 EDN: XBDXWX
  110. Wu K, He C, Wu Y, et al. Preservation of small extracellular vesicle in gelatin methacryloyl hydrogel through reduced particles aggregation for therapeutic applications. Int J Nanomedicine. 2021;16:7831–7846. doi: 10.2147/IJN.S334194 EDN: OHJZLC
  111. Qian Z, Bai Y, Zhou J, et al. A moisturizing chitosan-silk fibroin dressing with silver nanoparticles-adsorbed exosomes for repairing infected wounds. J Mater Chem B. 2020;8(32):7197–7212. doi: 10.1039/d0tb01100b
  112. Shen Y, Xu G, Huang H, et al. Sequential release of small extracellular vesicles from bilayered thiolated alginate/polyethylene glycol diacrylate hydrogels for scarless wound healing. ACS Nano. 2021;15(4):6352–6368. doi: 10.1021/acsnano.0c07714 EDN: DXUOYA
  113. Tao SC, Guo SC, Li M, et al. Chitosan wound dressings incorporating exosomes derived from microRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736–747. doi: 10.5966/sctm.2016-0275 EDN: YYJXOZ
  114. Guo SC, Tao SC, Yin WJ, et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017;7(1):81–96. doi: 10.7150/thno.16803 EDN: YWVTFD
  115. Hao D, Lu L, Song H, et al. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics. 2022;12(13):6021–6037. doi: 10.7150/thno.70448 EDN: WHPVFY
  116. Jorgensen AM, Chou Z, Gillispie G, et al. Decellularized skin extracellular matrix (dsECM) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications. Nanomaterials (Basel). 2020;10(8):1484. doi: 10.3390/nano10081484 EDN: TZWQZY
  117. Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Glob Open. 2015;3(1):e284. doi: 10.1097/GOX.0000000000000219
  118. Sun Y, Zhang J, Chen B, et al. Small extracellular vesicles secreted by urine-derived stem cells enhanced wound healing in aged mice by ameliorating cellular senescence. J Mater Sci Technol. 2021;63:216–227. doi: 10.1016/j.jmst.2020.03.014 EDN: LNHXJH
  119. Bakhtyar N, Jeschke MG, Herer E, et al. Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther. 2018;9(1):193. doi: 10.1186/s13287-018-0921-2
  120. Garima Sharma D, Kumar A, Mostafavi E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. Mol Ther Nucleic Acids. 2023;32:822–840. doi: 10.1016/j.omtn.2023.05.002 EDN: VLUKDF

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.