Immunological aspects of SARS-CoV-2 coronavirus damage

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In 2020 the whole world was faced with an epidemiological outbreak caused by a new coronavirus SARS-CoV-2. The information available to date suggests that the newly isolated SARS-CoV-2 coronavirus should be assigned to superantigens, the main manifestations of which, as it is known, are suppression of nonspecific resistance factors and suppression of innate immunity mechanisms associated with the formation of a systemic inflammatory response in the form of cytokine storm and pathological activation of phagocytes in the lung tissue with its alteration and subsequent fibrosis. In this case, it is quite difficult and sometimes even impossible to observe the formation of fully-fledged specific immune answer on the effect of such antigens. This, along with the high infectious nature of the disease and the associated mortality, requires special attention to the underlying immunopatomechanism(s). Perhaps that is why little information has been obtained regarding the immunogenic properties of the newly isolated SARS-CoV-2 coronavirus so far, as well as, most importantly, about the structures of the virus itself responsible for the formation of specific immunity to it. The latter will serve as the basis for patient management and vaccine development. Nevertheless, a certain point of view on this issue is already beginning to form, as tools for detecting specific antibodies are being actively developed, as well as modern diagnostic tests for coronavirus, which include real-time polymerase chain reaction, real-time reverse transcription polymerase chain reaction and isothermal amplification mediated by reverse transcription. The presented analysis makes it possible to expand the understanding of the issue concerning the immunopathogenesis of COVID-19, the mechanisms of the onset and development of the disease in a living organism, the formation of an immune response to the new coronavirus, and also to determine the therapeutic tactics of managing patients with severe coronavirus infection. Elucidating the mechanisms of the emergence and development of a new coronavirus infection can help scientists, general practitioners, clinicians, and laboratory physicians respond correctly to the COVID-19 pandemic.

Full Text

Restricted Access

About the authors

Timur I. Minnullin

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: gniiivm_2@mil.ru

candidate of medical sciences

Russian Federation, Saint Petersburg

Alexander V. Stepanov

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru

doctor of medical sciences

Russian Federation, Saint Petersburg

Sergey V. Chepur

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Evgeny V. Ivchenko

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru

doctor of medical sciences, associate professor

Russian Federation, Saint Petersburg

Ivan V. Fateev

State Research Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: gniiivm_2@mil.ru

doctor of medical sciences

Russian Federation, Saint Petersburg

Evgeniy V. Kryukov

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: evgeniy.md@mail.ru
ORCID iD: 0000-0002-8396-1936
Scopus Author ID: 57208311867

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Vasily N. Tsygan

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: vn-t@mail.ru

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

References

  1. Makarov V, Riabova O, Ekins S, et al. The past, present and future of RNA respirarory viruses: influenza and coronaviruses. Pathog Dis. 2020;78(7):ftaa046. doi: 10.1093/femspd/ftaa046
  2. Peck KM, Burch CL, Heise MT, et al. Coronavirus host range expansion and Middle East respiratory syndrome coronavirus emergence: biochemical mechanisms and evolutionary perspectives. Annu Rev Virol. 2015;2(1):95–117. doi: 10.1146/annurev-virology-100114-055029
  3. Vijay R, Perlman S. Science Direct Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol. 2016;16:70–76. doi: 10.1016/j.coviro.2016.01.011
  4. Alsahafi AJ, Cheng AC. The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015. Int J Infect Dis. 2016;45:1–4. doi: 10.1016/j.ijid.2016.02.004
  5. Drexler JF, Corman VM, Drosten C. Ecology evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45–56. doi: 10.1016/j.antiviral.2013.10.013
  6. Milne-Price S, Miazgowicz KL, Munster VJ. The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis. 2014;71(2):121–136. doi: 10.1111/2049-632X.12166
  7. Weber DJ, Rutala WA, Fischer WA, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control. 2016;44(5):e91–e100. doi: 10.1016/j.ajic.2015.11.018
  8. Yadam S, Bihler E, Balaan M, et al. Acute respiratory distress syndrome. Crit Care Nurs Q. 2016;39(2):190–195. doi: 10.1001/jama.2012.5669
  9. Barh D, Andrade BS, Tiwari S. Natural selection versus creation: a review on the origin of SARS-COV-2. Infez Med. 2020;28(3):302–311.
  10. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses — a statement of the Coronavirus Study Group. Nature Microbiology. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z
  11. Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323(8):709–710. doi: 10.1001/jama.2020.1097
  12. Kryukov EV, Zaitsev AA, Chernov SA, et al. Algorithms for the management of patients with a new coronavirus infection COVID-19 in the hospital. Moscow: GVKG im. NN Burdenko; 2020. (In Russ.).
  13. Abaturov AE, Agafonova EA, Krivusha EL, et al. Pathogenesis of COVID-19. Zdorov’e Rebenka. 2020;15(2):133–144. doi: 10.22141/2224-0551.15.2.2020.200598
  14. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
  15. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–941. doi: 10.1126/science.1214935
  16. Ahlawat S, Asha, Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020;286:198103. doi: 10.1016/j.virusres.2020.198103
  17. Cipriano M, Ruberti E, Giacalone A. Gastrointestinal infection could be new focus for coronavirus diagnosis. Cureus. 2020;12(3):e7422. doi: 10.7759/cureus.7422
  18. Garg RK. Spectrum of neurological manifestations in Covid-19: a review. Neurol India. 2020;68(3):560–572. doi: 10.4103/0028-3886.289000
  19. Machhi J, Herskovitz J, Senan AM, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol. 2020;15(3):359–386. doi: 10.1007/s11481-020-09944-5
  20. Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019. Vol. 11. No. 1. P. 59. doi: 10.3390/v11010059
  21. Chepur SV, Pluzhnikov NN, Chubar OV, et al. Respiratory RNA viruses: how to prepare for a meeting with new pandemic strains. Uspekhi sovremennoy biologii. 2020;140(4):359–377. (In Russ.). doi: 10.31857/S0042132420040043
  22. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185–195. doi: 10.1002/path.4454
  23. Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J. 2015;12:222. doi: 10.1186/s12985-015-0439-5
  24. Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virolology. 2020;94(7):e00127. doi: 10.1128/JVI.00127-20
  25. Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B-coronaviruses, including 2019-nCoV. Nat Microbiol. 2020;5(4):562–569. doi: 10.1038/s41564-020-0688-y
  26. Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. doi: 10.1002/jmv.25685
  27. Wang K, Chen W, Zhou Y-S, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020. doi: 10.1101/2020.03.14.988345
  28. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  29. Smirnov VS, Zarubaev VV, Petlenko SV. Biology of pathogens and control of influenza and SARS. St. Petersburg: Hippocrates; 2020. (In Russ.).
  30. Berger J.R. COVID-19 and the nervous system. J. Neurovirol. 2020;26(2):143–148. doi: 10.1007/s13365-020-00840-5
  31. Shi CS, Qi HY, Boularan C, et al. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol. 2014;193(6):3080–3089. doi: 10.4049/jimmunol.1303196
  32. Pluzhnikov NN, Gaidar BV, Chepur SV, et al. Redox regulation: fundamental and applied problems. Actual and applied problems and prospects for the development of military medicine: scientific tr. NIITS (MBZ) GNII VM MO RF. St. Petersburg. 2003;4:139–173. (In Russ.).
  33. Martín-Vicente M, Medrano LM, Resino S, et al. TRIM25 in the regulation of the antiviral innate immunity. Front Immunol. 2017;8:1187. doi: 10.3389/fimmu.2017.01187
  34. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and con-sequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x
  35. Chien J-Y, Hsueh P-R. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology. 2006;11(6):715–722. doi: 10.1111/j.1440-1843.2006.00942.x
  36. Cong Y, Hart BJ, Zhou H, et al. MERS-CoV pathogenesis and antiviral efficacy of licensed drugs in human monocyte-derived antigen-presenting cells. PLoS One. 2018;13(3):e0194868. doi: 10.1371/journal.pone.0194868
  37. Gralinski LE, Bankhead III A, Jeng S, et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. mBio. 2013;4(4):e00271-13. doi: 10.1128/mBio.00271-13
  38. Kim ES, Choe PG, Park WB, et al. Clinical progression and cytokine profiles of middle east respiratory syndrome coronavirus infection. J Korean Med Sci. 2016;31(11):1717–1725. doi: 10.3346/jkms.2016.31.11.1717
  39. Chan RWY, Chan MCV, Agnohothram S, et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol. 2013;87(12):6604–6614. doi: 10.1128/JVI.00009-13
  40. Channappanavar R, Fehr AR. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe. 2016;19(2):181–193. doi: 10.1016/j.chom.2016.01.007
  41. Zaitsev AA, Golukhova EZ, Mamalyga ML, et al. Efficacy of methylprednisolone pulse therapy in patients with COVID-19. Clinical microbiology and antimicrobial chemotherapy. 2020;22(2):88–91. (In Russ.). doi: 10.36488/cmac.2020.2.88-91
  42. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus e protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330–339. doi: 10.1016/j.virol.2015.08.010
  43. Zhao C, Zhao W. NLRP3 Inflammasome — a key player in antiviral responses Front Immunol. 2020;11:211. doi: 10.3389/fimmu.2020.00211
  44. Pluzhnikov NN, Chepura SV, Khurtsilava OG, editors. Sepsis: fire and riot on a ship sinking in a storm. Part 1. Triggers of inflammation. reception of inflammatory triggers and singal transduction. St. Petersburg: Publishing House of the I. I. Mechnikov NWSMU; 2018. (In Russ.).
  45. Li S, Yuan L, Dai G, et al. Regulation of the ER stress response by the ion channel activity of the infectious bronchitis coronavirus envelope protein modulates virion release, apoptosis, viral fitness, and pathogenesis. Front Microbiol. 2020;10:3022. doi: 10.3389/fmicb.2019.03022
  46. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signal-ling. Nat Rev Immunol. 2016;16:407–420. doi: 10.1038/nri.2016.58
  47. Rathinam VAK, Chan FK-M. Inflammasome, inflammation and tissue homeostasis. Trends Mol Med. 2018;24(3):304–318. doi: 10.1016/j.molmed.2018.01.004
  48. Wang Y, Shi P, Chen Q, et al. Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 2019;11(12):1069–1082. doi: 10.1093/jmcb/mjz020
  49. Loutfy MR, Blatt LM, Siminovitch KA, et al. Interferon alfacon-1 plus corticosteroids in severe acute respiratory syndrome: a preliminary study. JAMA. 2003;290(24):3222–3228. doi: 10.1001/jama.290.24.3222
  50. Rialdi A, Campisi L, Zhao N, et al. Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science. 2016;352(6289):aad7993. doi: 10.1126/science.aad7993
  51. Wang R, Xiao H, Guo R, et al. The role of C5a in acute lung injury induced by highly pathogenic viral infections. Emerg Microbes Infect. 2015;4(5):e28. doi: 10.1038/emi.2015.28
  52. Bao L, Deng W, Gao H. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. Nat Med. 2020;26:1033–1036. doi: 10.1038/s41591-020-0913-5
  53. Guo X, Guo Z, Duan C, et al. Long-Term persistence of IgG antibodies in SARS-CoV. Infected Healthcare Workers. 2020. doi: 10.1101/2020.02.12.20021386
  54. Wu L-P, Wang N-C, Chang Y-H, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 200;13(10):1562–1564. doi: 10.3201/eid1310.070576
  55. Gao H-X, Li Y-N, Xu Z-G, et al. Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected cases from different stages. Chinese Med J. 2020;133(12):1479–1480. doi: 10.1097/CM9.0000000000000820
  56. Gao Y, Yuan Y, Li TT, et al. Evaluation the auxiliary diagnosis value of antibodies assays for detection of novel coronavirus (SARS-CoV-2) causing an outbreak of pneumonia (COVID-19). J Med Virol. 2020;92(10):1975–1979. doi: 10.1002/jmv.25919
  57. Haveri A, Smura T, Kuivanen S, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. EuroSurveill. 2020;25(11):2000266. doi: 10.2807/1560-7917.ES.2020.25.11.2000266
  58. Jiang H-W, Li Y, Zhang H, et al. SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun. 2020;11:3581. doi: 10.1038/s41467-020-17488-8
  59. Liu R, Liu X, Han H, et al. The comparative superiority of IgM-IgG antibody test to real-time reverse transcriptase PCR detection for SARS-CoV-2 infection diagnosis. Front Microbiol. 2020;10:3022. doi: 10.3389/fmicb.2019.03022
  60. Pan Y, Li X, Yang G, et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect. 2020;81(1):e28-e32. doi: 10.1016/j.jinf.2020.03.051
  61. To KK, Tsang OT, Leung WS, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. The Lancet. Infectious Diseases. 2020;20(5):565–574. doi: 10.1016/S1473-3099(20)30196-1
  62. Xiao DAT, Gao DC, Zhang DS. Profile of specific antibodies to SARS-CoV-2: The first report. J Infect. 2020;81(1):147–178. doi: 10.1016/j.jinf.2020.03.012
  63. Amanat F, Stadbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nature Medicine. 2020;26:1033–1036. doi: 10.1101/2020.03.17.20037713
  64. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi: 10.1016/j.jaut.2020.102506

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Minnullin T.I., Stepanov A.V., Chepur S.V., Ivchenko E.V., Fateev I.V., Kryukov E.V., Tsygan V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies