Approaches to isolating and purifying nucleic acids from blood for genotyping human leukocytic antigen

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Donor–recipient histocompatibility results from the presence on cell membranes of the main protein complex of histocompatibility and is a key condition for successful transplantation of cells, tissues, and organs. To determine histocompatibility, human leukocyte antigen is genotyped, and its accuracy relied significantly on the quality and quantity of nucleic acids obtained from the biomaterial. In laboratory practice, the most pure and intact deoxyribonucleic and ribonucleic acids are extracted from the blood; however, the choice of an accessible, effective, time-efficient, and viable method for their production remains challenging. The methods of isolation and purification of nucleic acids from the blood include organic extraction, salting out, and use of spin columns and magnetic particles (“bidids”), and their advantages and disadvantages, efficiency indicators, practicality, and cost were compared. The selection of the peripheral blood as a source of genetic material for genotyping human leukocyte antigen is justified. Experimental data comparing the price–quality ratio of commercial protocols for the extraction of deoxyribonucleic and ribonucleic acids from blood were analyzed. Prospects of modification of procedures for isolation and purification of nucleic acids from biomaterial for sequencing of genes of human leukocyte antigen classes I and II to increase efficiency of high-tech care are evaluated. Generally, the need for affordable and effective protocols for the extraction of deoxyribonucleic and ribonucleic acids from minimal biomaterial volumes stimulates the optimization and modification of existing protocols and the creation of new methods on new physicochemical principles.

Full Text

Restricted Access

About the authors

Oleg A. Baranov

“ERA” Military Innovation Technopolis

Email: repit13254@gmail.com

senior operator

Russian Federation, Anapa

Dmitry A. Bayran

“ERA” Military Innovation Technopolis

Email: dima.bayran@mail.ru
ORCID iD: 0000-0001-5527-5560

senior operator

Russian Federation, Anapa

Ilya V. Markin

“ERA” Military Innovation Technopolis

Author for correspondence.
Email: ilya.markin.92@bk.ru
SPIN-code: 6021-7645

candidate of technical sciences

Russian Federation, Anapa

Elena S. Shchelkanova

“ERA” Military Innovation Technopolis

Email: schelkanova_el@mail.ru
SPIN-code: 8396-0602

candidate of biological sciences

Russian Federation, Anapa

Evgeny A. Zhurbin

“ERA” Military Innovation Technopolis

Email: zhurbin-90@mail.ru
SPIN-code: 8426-1354

кандидат медицинских наук

Russian Federation, Anapa

References

  1. Williams R, Opelz G, Weil E, et al. The risk of transplant failure with HLA mismatch in recent times. Transplantation. 2016;100(9): e52–e53. doi: 10.1097/tp.0000000000001365
  2. Ochoa-Dıaz MM, Daza-Giovannetty S, Gómez-Camargo D. Bacterial genotyping methods: from the basics to modern. Host-Pathogen Interactions. Humana Press. 2018;13–20. doi: 10.1007/978-1-4939-7604-1_2
  3. Westhoff CM. Blood group genotyping. Blood. 2019;133(17): 1814–1820. doi: 10.1182/blood-2018-11-833954
  4. Jackson SE, Chester JD. Personalised cancer medicine. Int J Cancer. 2014;137(2):262–266. doi: 10.1002/ijc.28940
  5. Shendure J, Findlay GM, Snyder MW. Genomic Medicine-Progress, Pitfalls, and Promise. Cell. 2019;177(1):45–57. doi: 10.1016/j.cell.2019.02.003
  6. Osoegawa K, Vayntrub TA, Wenda S, et al. Quality control project of NGS HLA genotyping for the 17th International HLA and Immunogenetics Workshop. Hum Immunol. 2019;80(4):228–236. doi: 10.1016/j.humimm.2019.01.009
  7. Madden K, Chabot-Richards D. HLA testing in the molecular diagnostic laboratory. Virchows Archiv. 2018;474(2):139–147. doi: 10.1007/s00428-018-2501-3
  8. Gupta N. DNA extraction and polymerase chain reaction. J Cytol. 2019;36(2):116–117. doi: 10.4103/joc.joc_110_18
  9. Shehadul Islam M, Aryasomayajula A, Selvaganapathy PR. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines (Basel). 2017;8(3):83. doi: 10.3390/mi8030083
  10. Mullegama SV, Alberti MO, Au C, et al. Nucleic Acid Extraction from Human Biological Samples. Biobanking: Methods and Protocols. 2018:359–383. doi: 10.1007/978-1-4939-8935-5_30
  11. Tan SC, Yiap BC. DNA, RNA, and Protein Extraction: The Past and The Present. J Biomed Biotechnol. 2009;2009:1–10. doi: 10.1155/2009/574398
  12. Greathouse KL, Sinha R, Vogtmann E. DNA extraction for human microbiome studies: the issue of standardization. Genome Biol. 2019;20:212. doi: 10.1186/s13059-019-1843-8
  13. Singer VL, Jones LJ, Yue ST, Haugland RP. Characterization of PicoGreen Reagent and Development of a Fluorescence-Based Solution Assay for Double-Stranded DNA Quantitation. Anal Biochem. 1997;249(2):228–238. doi: 10.1006/abio.1997.2177
  14. Georgiou CD, Papapostolou I. Assay for the quantification of intact/fragmented genomic DNA. Anal Biochem. 2006;358(2): 247–256. doi: 10.1016/j.ab.2006.07.035
  15. Sambrook J. Molecular cloning: a laboratory manual. NY: Cold Spring Harbor Laboratory Press; 1989.
  16. Buckingham L. Molecular Diagnostics. 3 edition. Philadelphia: F.A. Davis Company; 2019. 576 p.
  17. Chomczynski P, Mackey K, Drews R, Wilfinger W. DNAzol®: A Reagent for the Rapid Isolation of Genomic DNA. Biotechniques. 1997;22(3):550–553. doi: 10.2144/97223pf01
  18. Chomczynski P, Sacchi N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal Biochem. 1987;162(1):156–159. doi: 10.1006/abio.1987.9999
  19. Simms D, Cizdziel P, Chomczynski P, et al. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus. 1993;15(4):532–535.
  20. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2): 581–585. doi: 10.1038/nprot.2006.83
  21. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215–1215. doi: 10.1093/nar/16.3.1215
  22. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucleic Acids Res. 1997;25(22):4692–4693. doi: 10.1093/nar/25.22.4692
  23. Suguna S, Nandal D, Kamble S, et al. Genomic DNA isolation from human whole blood samples by non-enzymatic salting out method. Int J pharm pharm sci. 2014;6(6):198–199.
  24. Moradi M, Yari K, Khodarahmi R. A novel, efficient, fast and inexpensive DNA extraction protocol from whole blood applicable for studying drug-DNA interaction. J Rep Pharm Sci. 2014;3(1):80–84.
  25. Padhye VV, York C, Burkiewicz A. Nucleic acid purification on silica gel and glass mixtures. United States patent US 5658548. 1997 Aug 19.
  26. Kojima K, Ozawa S. Method for isolating and purifying nucleic acids. United States patent US 6905825. 2005.
  27. Woodard DL, Howard AJ, Down JA. Process for purifying DNA on hydrated silica. United States patent US 5342931. 1994 Aug 30.
  28. Gjerde DT, Hoang L, Hornby D. RNA Purification and Analysis: Sample Preparation, Extraction, Chromatography. RNA Purification and Analysis. 2009:1–16. doi: 10.1002/9783527627196
  29. Nargessi RD. Magnetic isolation and purification of nucleic acids. United States patent US 6855499B1. 2005.
  30. Berensmeier S. Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol. 2006;73(3):495–504. doi: 10.1007/s00253-006-0675-0
  31. Barbosa C, Nogueira S, Gadanho M, Chaves S. DNA extraction: finding the most suitable method. Molecular Microbial Diagnostic Methods. 2016:135–154. doi: 10.1016/b978-0-12-416999-9.00007-1
  32. Albretsen C, Kalland K-H, Haukanes B-I, et al. Applications of magnetic beads with covalently attached oligonucleotides in hybridization: Isolation and detection of specific measles virus mRNA from a crude cell lysate. Anal Biochem. 1990;189(1):40–50. doi: 10.1016/0003-2697(90)90041-7
  33. Bosnes M, Breivold E, Jobert L, et al. Solid-phase in vitro transcription and mRNA purification using DynabeadsTM, superparamagnetic beads. 5th International mRNA Health Conference. 2017.
  34. Philibert RA, Zadorozhnyaya O, Beach SRH, Brody GH. Comparison of the genotyping results using DNA obtained from blood and saliva. Psychiatr Genet. 2008;18(6):275–281. doi: 10.1097/ypg.0b013e3283060f81
  35. Godderis L, Schouteden C, Tabish A, et al. Global Methylation and Hydroxymethylation in DNA from Blood and Saliva in Healthy Volunteers. Biomed Res Int. 2015;2015:845041. doi: 10.1155/2015/845041
  36. Elliott P, Peakman T. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37(2):234–244. doi: 10.1093/ije/dym276
  37. Chacon-Cortes D, Haupt LM, Lea RA, Griffiths LR. Comparison of genomic DNA extraction techniques from whole blood samples: a time, cost and quality evaluation study. Mol Biol Rep. 2012;39(5):5961–5966. doi: 10.1007/s11033-011-1408-8
  38. Ghaheri M, Kahrizi D, Yari K, et al. A comparative evaluation of four DNA extraction protocols from whole blood sample. Cell Mol Biol. 2016;62(3):120–124.
  39. Koshy L, Anju AL, Harikrishnan S, et al. Evaluating genomic DNA extraction methods from human whole blood using endpoint and real-time PCR assays. Mol Biol Rep. 2016;44(1):97–08. doi: 10.1007/s11033-016-4085-9
  40. Sakyi SA, Kumi B, Ephraim RKD, et al. Modified DNA extraction technique for use in resource-limited settings: comparison of salting out methods versus QIAamp blood mini kit. Annals of Medical and Health Sciences Research. 2017;7(3):131–136.
  41. Psifidi A, Dovas CI, Bramis G, et al. Comparison of Eleven Methods for Genomic DNA Extraction Suitable for Large-Scale Whole-Genome Genotyping and Long-Term DNA Banking Using Blood Samples. PLoS One. 2015;10(1):e0115960. doi: 10.1371/journal.pone.0115960
  42. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2009;11(1):31–46. doi: 10.1038/nrg2626
  43. Zeng X, Elwick K, Mayes C, et al. Assessment of impact of DNA extraction methods on analysis of human remain samples on massively parallel sequencing success. Int J Legal Med. 2018;133(1):51–58. doi: 10.1007/s00414-018-1955-9
  44. Rodríguez A, Duyvejonck H, Van Belleghem JD, et al. Comparison of procedures for RNA-extraction from peripheral blood mononuclear cells. PLoS One. 2020;15(2):e0229423. doi: 10.1371/journal.pone.0229423
  45. Richards J, Unger ER, Rajeevan MS. Simultaneous extraction of mRNA and microRNA from whole blood stabilized in tempus tubes. BMC Res Notes. 2019;12(1):39. doi: 10.1186/s13104-019-4087-5
  46. Kim J-H, Jin H-O, Park J-A, et al. Comparison of three different kits for extraction of high-quality RNA from frozen blood. Springerplus. 2014;3(1):76. doi: 10.1186/2193-1801-3-76
  47. Aarem J, Brunborg G, Aas KK, et al. Comparison of blood RNA isolation methods from samples stabilized in Tempus tubes and stored at a large human biobank. BMC Res Notes. 2016;9(1):430. doi: 10.1186/s13104-016-2224-y
  48. Schwochow D, Serieys LEK, Wayne RK, Thalmann O. Efficient recovery of whole blood RNA – a comparison of commercial RNA extraction protocols for high-throughput applications in wildlife species. BMC Biotechnol. 2012;12(1):33. doi: 10.1186/1472-6750-12-33
  49. Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27(2-3):126–139. doi: 10.1016/j.mam.2005.12.003
  50. Fleige S, Walf V, Huch S, et al. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett. 2006;28(19):1601–1613. doi: 10.1007/s10529-006-9127-2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Organic (phenol-chloroform) extraction of nucleic acids: a — genomic deoxyribonucleic acid; b — ribonucleic acid

Download (389KB)
3. Fig. 2. Isolation of genomic deoxyribonucleic acid by salting out

Download (1MB)
4. Fig. 3. Isolation of nucleic acids using spin columns: a — genomic deoxyribonucleic acid; b — ribonucleic acid

Download (478KB)
5. Fig. 4. Isolation of nucleic acids on magnetic particles: a — genomic deoxyribonucleic acid; b — ribonucleic acid

Download (485KB)

Copyright (c) 2022 Baranov O.A., Bayran D.A., Markin I.V., Shchelkanova E.S., Zhurbin E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies