Development of a method for the identification of rs6265 polymorphism in the human brain neurotrophic factor gene

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The analysis and generalization of data from the literature sources characterizing the structural organization, regulation of expression, and functional activity of the neurotrophic factor of the human brain, which is one of the most common regulators of biological processes in the nervous system, is carried out. The results of numerous studies demonstrating the association of the brain-derived neurotrophic factor (BDNF) gene with the pathophysiology of the affective disorders are noted, and its contribution to the development of neuroplasticity is confirmed. The results of the design of a pair of primers and adaptation of the amplification reaction of the BDNF region with a length of 433 nucleotide pairs containing the polymorphic locus RS6265 are presented. Restriction endonuclease was selected. The sequence of primers, their localization, and correlation with the restriction site provided the separation of alternative alleles necessary for the successful identification of this marker. The use of the proposed technique made it possible to uniquely identify the genotype in 38 examined whole blood samples and identify the rare allelic variants. Also, the frequency of polymorphic variants of RS6265 of the BDNF gene was established in all the samples. There was an increase in the proportion of genotypes G/A and A/A of the RS6265 polymorphism of the BDNF gene in the group of examined systematically exposed to extreme factors. Identification of people with a rare A/A genotype of the RS6265 polymorphic locus of the BDNF gene is of a great importance for the monitoring system of long-term potentiation processes leading to the development of neuropsychic pathology. The possibility of implementing this method of genotyping in a typical laboratory using a polymerase chain reaction is proved. The proposed version of the polymerase chain reaction with the subsequent analysis of the polymorphism of the lengths of restriction fragments could be used as a fast, inexpensive, and reliable system for identifying single-nucleotide genetic polymorphisms.

Full Text

Restricted Access

About the authors

Gennady G. Kutelev

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: gena08@yandex.ru
ORCID iD: 0000-0002-6489-9938
SPIN-code: 5139-8511

candidate of medical sciences

Russian Federation, Saint Petersburg

Alexander B. Krivoruchko

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: krab25@mail.ru
ORCID iD: 0000-0003-2035-4888
SPIN-code: 1324-0239

candidate of medical sciences

Russian Federation, Saint Petersburg

Alexandra E. Trandina

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: sasha-trandina@rambler.ru
ORCID iD: 0000-0003-1875-1059
SPIN-code: 6089-3495
Russian Federation, Saint Petersburg

Natalia E. Morozova

Peter the Great Saint Petersburg Polytechnic University

Email: natusmorozovna@gmail.ru
ORCID iD: 0000-0002-3001-2593
SPIN-code: 4716-8586
Scopus Author ID: 56454006100
ResearcherId: A-7955-2014

candidate of biology sciences

Russian Federation, Saint Petersburg

Dmitriy V. Cherkashin

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: cherkashin_dmitr@mail.ru
ORCID iD: 0000-0003-1363-6860
SPIN-code: 2781-9507

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Andrey M. Ivanov

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: iamvma@mail.ru
ORCID iD: 0000-0002-8899-7524
SPIN-code: 6971-1744
Scopus Author ID: 55867182100

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Dmitrii V. Ovchinnikov

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: dv.ovchinnikov-vma@yandex.ru
ORCID iD: 0000-0001-8408-5301
SPIN-code: 5437-3457
Scopus Author ID: 36185599800

candidate of medical sciences, associate professor

Russian Federation, Saint Petersburg

Ruslan I. Glushakov

Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation

Email: glushakovruslan@gmail.ru
ORCID iD: 0000-0002-0161-5977
SPIN-code: 6860-8990
Scopus Author ID: 55263592100

candidate of medical sciences

Russian Federation, Saint Petersburg

References

  1. Lledo P, Alonso M, Grubb M. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7(3):179–193. doi: 10.1038/nrn1867
  2. Shors T, Miesegaes G, Beylin A, et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410(6826):372–376. doi: 10.1038/35066584
  3. Deng W, Saxe M, Gallina I, Gage F. Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci. 2009;29(43):13 532–13 542. doi: 10.1523/JNEUROSCI.3362-09.2009
  4. Snyder J, Hong N, McDonald R, Wojtowicz J. A role for adult neurogenesis in spatial long-term memory. Neuroscience. 2005;130(4):843–852. doi: 10.1016/j.neuroscience.2004.10.009
  5. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91(4):267–270. doi: 10.1254/jphs.91.267
  6. Mizui T, Ishikawa Y, Kumanogoh H, et al. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci USA. 2015;112(23):3067–3074. doi: 10.1073/pnas.1422336112
  7. Harrisberger F, Smieskova R, Schmidt A, et al. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:107–118. doi: 10.1016/j.neubiorev.2015.04.017
  8. Thompson R, Weickert C, Wyatt E, Webster M. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci. 2011;36(3):195–203. doi: 10.1503/jpn.100048
  9. Gonul A, Akdeniz F, Taneli F, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6):381–386. doi: 10.1007/s00406-005-0578-6
  10. Boulle F, van den Hove D, Jakob S, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–596. doi: 10.1038/mp.2011.107
  11. Wang M, Xie Y, Qin D. Proteolytic cleavage of proBDNF to mBDNF in neuropsychiatric and neurodegenerative diseases. Brain Res Bull. 2021;166:172–184. doi: 10.1016/j.brainresbull.2020.11.005
  12. Li JY, Liu J, Manaph NPA, et al. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells. Brain Res. 2017;1668:46–55. doi: 10.1016/j.brainres.2017.05.013
  13. .Karpova N. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology. 2014;76:709–718. doi: 10.1016/j.neuropharm.2013.04.002
  14. Ernfors P, Kucera J, Lee KF, et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol. 1995;39(5):799–807.
  15. Ernfors P, Kucera J, Lee K, et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol. 1995;39(5):799–807.
  16. Sanwald S, Montag C, Kiefer M. Depressive emotionality moderates the influence of the BDNF Val66Met polymorphism on executive functions and on unconscious semantic priming. J Mol Neurosci. 2020;70(5):699–712. doi: 10.1007/s12031-020-01479-x
  17. Zhao Y, Zhu R, Xiao T, Liu X. Genetic variants in migraine: a field synopsis and systematic re-analysis of meta-analyses. J Headache Pain. 2020;21(1):13. doi: 10.1186/s10194-020-01087-5
  18. Middeldorp CM, Slof-Op’t Landt MC, Medland SE, et al. Anxiety and depression in children and adults: influence of serotonergic and neurotrophic genes? Genes Brain Behav. 2010;9(7):808–816. doi: 10.1111/j.1601-183X.2010.00619
  19. Petryshen T, Sabeti P, Aldinger K, et al. Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry. 2010;15(8):810–815. doi: 10.1038/mp.2009.24
  20. Linnér R, Biroli P, Kong E, et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics. 2019;51(2):245–257. doi: 10.1038/s41588-018-0309-3
  21. Egan M, Kojima M, Callicott J, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2): 257–269. doi: 10.1016/s0092-8674(03)00035-7
  22. Kennedy K, Reese E, Horn M, et al. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res. 2015;1612:104–117. doi: 10.1016/j.brainres.2014.09.044
  23. Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020;25(10):2251–2274. doi: 10.1038/s41380-019-0639-2
  24. Carver C, Johnson S, Joormann J, et al. Childhood adversity interacts separately with 5-HTTLPR and BDNF to predict lifetime depression diagnosis. J Affect Disord. 2011;132(1–2):89–93. doi: 10.1016/j.jad.2011.02.001
  25. Chen J, Li X, McGue M. Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression. Genes Brain Behav. 2012;11(8):958–965. doi: 10.1111/j.1601-183X.2012.00843.x
  26. Gyekis J, Yu W, Dong S, et al. No association of genetic variants in BDNF with major depression: A meta- and gene-based analysis. Am J Med Genet. Part B: Neuropsychiatric Genet. 2013;162(1):61–70. doi: 10.1002/ajmg.b.32122
  27. Sheikh H, Hayden E, Kryski K, et al. Genotyping the BDNF rs6265 (val66met) polymorphism by one-step amplified refractory mutation system PCR. Psychiatric Genetics. 2010;20(3):109–112. doi: 10.1097/YPG.0b013e32833a2038
  28. Iqbal M, Yaqoob T, Ali S, Khan A. A functional polymorphism (rs6265, G > A) of brain-derived neurotrophic factor gene and breast cancer: An association study. Breast Cancer: Basic Clin. Res. 2019;13. https://journals.sagepub.com/doi/full/10.1177/1178223419844977 (access date: 11.02.2021). DOI: 1178223419844977

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the structural organization of the BDNF gene

Download (92KB)
3. Fig. 2. Localization of the polymorphic site G > A and the restriction site in the target fragment of the BDNF gene

Download (499KB)
4. Fig. 3. The detection scheme of the polymorphic variant RS6265, based on the analysis of the differences in the length of restriction fragments

Download (142KB)
5. Fig. 4. Result of G/G genotype determination by separation of restriction fragments in 1.5% agarose gel

Download (156KB)
6. Fig. 5. Frequency of detection of polymorphic variants of rs6265 of the BDNF gene in the studied groups

Download (168KB)

Copyright (c) 2021 Kutelev G.G., Krivoruchko A.B., Trandina A.E., Morozova N.E., Cherkashin D.V., Ivanov A.M., Ovchinnikov D.V., Glushakov R.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies