Modern methods of detection and identification of microbial toxins that inhibit protein synthesis in cells

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Pathogenic microorganisms and products of their metabolism, namely, bacterial protein exotoxins, are considered one of the main sources of biological threat. Microbial toxins are highly active and extremely dangerous to humans. Determining trace amounts of such compounds remains relevant in healthcare and biological protection sector. Timely qualitative- and quantitative-specific indication of biotoxins is a key component in the diagnosis and implementation of therapeutic and preventive measures. Pathogenic microorganisms and products of their metabolism, bacterial protein exotoxins, are considered one of the main sources of biological threat. Microbial toxins are highly active and extremely dangerous to humans. Determining trace amounts of such compounds remains relevant in healthcare and biological protection sector. Timely qualitative- and quantitative-specific indication of biotoxins is a key component in the diagnosis and implementation of therapeutic and preventive measures. The current state and prospects of development in formulating specific indications of microbial toxins that disrupt protein synthesis in cells are analyzed. Modern ideas about the structure and mechanism of action of these toxins are briefly presented. Possibilities were considered, the advantages and disadvantages of classical traditional and modern innovative methods for identifying bacterial toxins that inhibit protein synthesis in cells were compared, and classifications were provided. Examples of the use of various approaches to identify the most significant representatives of this group in both clinical material and in environmental objects, including regulated ones, were given. The review also listed modern domestic and foreign developments in formulating specific indications of microbial toxins inhibiting protein synthesis. The review summarizes the results of studies to determine the current directions in the development of tools and methods for rapid specific indication of microbial toxins. The main trends in the creation of new methods of toxicological screening as part of an effective national system for monitoring biological threats were analyzed. Prospects for the development and introduction to the market of domestic test systems and automatic analysis platforms for the detection of bacterial toxins in environmental objects and biological material were determined.

Full Text

Restricted Access

About the authors

Olga A. Miteva

State Research and Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Author for correspondence.
Email: letto2004@inbox.ru
ORCID iD: 0000-0002-3874-6954
SPIN-code: 2070-7250
Scopus Author ID: 55195685300

applicant for an academic degree

Russian Federation, Saint Petersburg

Nadezhda S. Yudina

State Research and Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: www.gniii_2@mil.ru
SPIN-code: 1915-2194

applicant for an academic degree

Russian Federation, Saint Petersburg

Vadim A. Myasnikov

State Research and Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: www.gniii_2@mil.ru
SPIN-code: 5084-2723

candidate of medical sciences

Russian Federation, Saint Petersburg

Alexander V. Stepanov

State Research and Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: www.gniii_2@mil.ru
SPIN-code: 7279-7055

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

Sergey V. Chepur

State Research and Testing Institute of Military Medicine of the Ministry of Defense of the Russian Federation

Email: www.gniii_2@mil.ru
SPIN-code: 3828-6730

doctor of medical sciences, professor

Russian Federation, Saint Petersburg

References

  1. Magazov RSh, Stepanov AV, Chepur SV, Savel'ev AP. Toksiny biologicheskogo proiskhozhdeniya (priroda, struktura, biologicheskie funktsii i diagnostika). Ufa: Bashkirskaya ehntsiklopediya; 2019. P. 213–215. (In Russ.).
  2. Andryukov BG, Besednova NN, Kalinin AV, et al. Biologicheskoe oruzhie i global'naya sistema biologicheskoi bezopasnosti: prakticheskoe rukovodstvo. Vladivostok: Dal'nauka; 2017. P. 33–37. (In Russ.).
  3. Toczyska I, Płusa T. Shiga toxin and tetanus toxin as a potential biologic weapon. Pol Merkur Lekarski. 2015;39(231):157–161. PMID: 26449578
  4. Wesołowski A, Płusa T. Saxitoxins and tetrodotokxins as a new biological weapon. Pol Merkur Lekarski. 2015;39(231):173–175. PMID: 26449582
  5. Cao H, Baldini RL, Rahme LG. Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol. 2001;39(1):259–284. doi: 10.1146/annurev.phyto.39.1.259
  6. Jamet A, Touchon M, Ribeiro-Gonçalves B, Carriço A. A widespread family of polymorphic toxins encoded by temperate phages. BMC Biol. 2017;15:1–12. doi: 10.1186/s12915-017-0415-1
  7. Magazov RSh, Savel'ev AP, Chepur SV, et al. Ehpidemiologiya i profilaktika upravlyaemykh infektsii. Ufa: Bashkirskaya ehntsiklopediya; 2017. 688 p. (In Russ.).
  8. do Vale A, Cabanes D, Sousa S. Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol. 2016;7:42. doi: 10.3389/fmicb.2016.00042
  9. Domenighini M, Rappuoli R. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol. 1996;21(4):667–674. doi: 10.1046/j.1365-2958.1996.321396.x
  10. Armstrong S, Yates SP, Merrill AR. Insight into the Catalytic Mechanism of Pseudomonas aeruginosa Exotoxin A studies of toxin interaction with eukaryotic elongation factor-2. J Biol Chem. 2002;277(48):46669–46675. doi: 10.1074/jbc.M206916200
  11. Audi J. Ricin poisoning. A comprehensive review. JAMA. 2005;294(18):2343–2351. doi: 10.1001/jama.294.18.2342
  12. Shaginyan IA. Role and Significance of Molecular Methods in Epidemiological Analysis of Nosocomial Infections. Clinical Microbiology and Antimicrobial Chemotherapy. 2000;2(3):82–95. (In Russ.).
  13. Egorova ON. Ehpidemiologiya i profilaktika sinegnoinoi infektsii. Federal'nye klinicheskie rekomendatsii. Moscow; 2014. P. 50–56. (In Russ.).
  14. Zhang X. Military potencial of biological toxins. J Appl Biomed. 2014;12:63–77. doi: 10.1016/j.jab.2014.02.005
  15. O’Sullivan J, Bolton DJ, Duffy G. Methods for Detection and Molecular Characterization of Pathogenic Escherichia coli. Pathogenic E. coli. Network. Coordination action food. AFRC. Dublin: Ashtown Food Research Centre; 2007. 423 p.
  16. Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11(3):450–479. doi: 10.1128/CMR.11.3.450
  17. Deng Q, Barbieri JT. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol. 2008;62:271–288. doi: 10.1146/annurev.micro.62.081307.162848
  18. Davinic M, Carty NL, Colmer-Hamood JA, et al. Role of Vfr in regulating exotoxin A production by Pseudomonas aeruginosa. Microbiology. 2009;155(7):2265–2273. doi: 10.1099/mic.0.028373-0
  19. Zhdanov KV, Aminev RM, Belov AB, et al. Metodicheskie ukazaniya po diagnostike, lecheniyu i profilaktike ostrogo tonzillita i difterii v Vooruzhennykh cilakh Rossiiskoi Federatsii. Moscow: GVMU MO RF; 2019. P. 44–45. (In Russ.).
  20. Ezhlova EB, Mel'nikova AA, Koshkina NA, et al. Laboratornaya diagnostika difteriinoi infektsii: metodicheskie ukazaniya MUK 4.2.3065-13. Moscow: Federal'nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora; 2013. P. 23–31. (In Russ.).
  21. Dyatlov IA. Primenenie mass-spektrometrii dlya vyyavleniya i identifikatsii patogennykh mikroorganizmov i biotoksinov. Bacteriology. 2020;5(3):5–7. (In Russ.).
  22. Deryabin PN. Ehritrotsitarnye diagnostikumy dlya vyyavleniya ehkzotoksina A Pseudomonas aeruginosa. Zhurnal mikrobiologii. 1989;2:32–36. (In Russ.).
  23. Jaffar-Bandjee MC, Careere J, Bally M, et al. Immunoenzymometric assays for alkaline protease and exotoxin A from Pseudomonas aeruginosa: development and use in detecting exoproteins in clinical isolates. Eur J Clin Chem Clin Biochem. 1994;32:893–899. doi: 10.1515/cclm.1994.32.12.893
  24. Shigematsu T, Suda N, Okuda K, Fukushima J. Reliable enzyme-linked immunosorbent assay systems for pathogenic factors of Pseudomonas aeruginosa alkaline proteinase, elastase, and exotoxin A: a comparison of methods for labeling detection antibodies with horseradish peroxidase. Microbiol Immunol. 2007;12(51):1149–1159. doi: 10.1111/j.1348-0421.2007.tb04010.x
  25. Wu SY, Hulme J, An SS. Recent trends in the detection of pathogenic Escherichia coli O157: H7. BioChip Journal. 2015;9(3): 173–181. doi: 10.1007/s13206-015-9208-9
  26. He X, Kong Q, Patfield S, et al. A new immunoassay for detecting all subtypes of Shiga toxins produced by Shiga toxin-producing E. coli in ground beef. PloS one. 2016;11(1):e0148092. doi: 10.1371/journal.pone.0148092
  27. Zasada AA, Rastawicki W, Smietanska K, et al. Comparison of seven commercial enzyme-linked immunosorbent assays for the detection of anti-diphtheria toxin antibodies. Eur J Clin Microbiol Infect Dis. 2013;32(7):891–897. doi: 10.1007/s10096-013-1823-y
  28. Anjum MF, Jones E, Morrison V, et al. Use of virulence determinants and seropathotypes to distinguish high-and low-risk Escherichia coli O157 and non-O157 isolates from Europe. Epidemiol Infect. 2014;142(5):1019–1028. doi: 10.1017/S0950268813001635
  29. Martínez-Castillo A, Muniesa M. Implications of free Shiga toxin-converting bacteriophages occurring outside bacteria for the evolution and the detection of Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol. 2014;4:46. doi: 10.3389/fcimb.2014.00046
  30. Trevisani M, Mancusi R, Delle don D, et al. Detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) in bovine dairy herds in Northern Italy. Int J Food Microbiol. 2014;184:45–49. doi: 10.1016/j.ijfoodmicro.2013.12.033
  31. Anjum MF, Tucker JD, Sprigings KA, et al. Use of miniaturized protein arrays for Escherichia coli O serotyping. CVI. 2006;13(5): 561–567. doi: 10.1128/CVI.13.5.561-567.2006
  32. Diribe O, North S, Sawyer J, et al. Design and application of a loop-mediated isothermal amplification assay for the rapid detection of Staphylococcus pseudintermedius. J Vet Diagn Invest. 2014;26(1):42–48. doi: 10.1177/1040638713516758
  33. Yano A, Ishimaru R, Hujikata R. Rapid and sensitive detection of heat-labile I and heat-stable I enterotoxin genes of enterotoxigenic Escherichia coli by loop-mediated isothermal amplification. J Microbiol Methods. 2007;68(2):414–420. doi: 10.1016/j.mimet.2006.09.024
  34. Hill J, Beriwal S, Chandra I, et al. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli. J Clin Microbiol. 2008;46(8):2800–2804. doi: 10.1128/JCM.00152-08
  35. Dong HJ, Cho AR, Hahn TW, Cho S. Development of a multiplex loop-mediated isothermal amplification assay to detect shiga toxin-producing Escherichia coli in cattle. J Vet Sci. 2014;15(2):317–325. doi: 10.4142/jvs.2014.15.2.317
  36. Wang F, Jiang L, Yang Q, et al. Rapid and specific detection of Escherichia coli serogroups O26, O45, O103, O111, O121, O145, and O157 in ground beef, beef trim, and produce by loop-mediated isothermal amplification. Appl Environ Microbiol. 2012;78(8): 2727–2736. doi: 10.1128/AEM.07975-11
  37. Yan M, Xu L, Jiang H, et al. PMA-LAMP for rapid detection of Escherichia coli and shiga toxins from viable but non-culturable state. Microbial pathogenesis. 2017;105:245–250. doi: 10.1016/j.micpath.2017.02.001
  38. Ravan H, Amandadi M, Sanadgol N. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157: H7. Microbial pathogenesis. 2016;91:161–165. doi: 10.1016/j.micpath.2015.12.011
  39. Lavenir R, Jocktane D, Laurent F, et al. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods. 2007;70(1):20–29. doi: 10.1016/j.mimet.2007.03.008
  40. Motoshima M, Yanagihara K, Fukushima K, et al. Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn Microbiol Infect Dis. 2007;58(1):53–58. doi: 10.1016/j.diagmicrobio.2006.11.007
  41. Spilker Т, Coenye Т, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074–2079. doi: 10.1128/JCM.42.5.2074-2079.2004
  42. Wolska K, Szweda P. Genetic features of clinical Pseudomonas aeruginosa strains. Pol J Microbiol. 2009;58(3):255–260.
  43. Shi H, Trinh Q, Xu W, et al. A universal primer multiplex PCR method for typing of toxinogenic Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2012;95(6):1579–1587. doi: 10.1007/s00253-012-4277-8
  44. Chen Y, Cheng N, Xu Y, et al. Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosensors and Bioelectronics. 2016;81: 317–323. doi: 10.1016/j.bios.2016.03.006
  45. Torres LD, Ribeiro D, Hirata R Jr, et al. Multiplex polymerase chain reaction to identify and determine the toxigenicity of Corynebacterium spp with zoonotic potential and an overview of human and animal infections. Memórias do Instituto Oswaldo Cruz. 2013;108(3): 272–279. doi: 10.1590/S0074-02762013000300003
  46. Berger A, Hogardt M, Konrad R, Sing A. Detection methods for laboratory diagnosis of diphtheria. Burkovski A., editor. Corynebacterium diphtheriae and related toxigenic species. Springer, Dordrecht; 2014. P. 171–205. doi: 10.1007/978-94-007-7624-1_9
  47. Mancini F, Monaco M, Pataracchia M, et al. Identification and molecular discrimination of toxigenic and nontoxigenic diphtheria Corynebacterium strains by combined real-time polymerase chain reaction assays. Diagn Microbiol Infect Dis. 2012;73(2):111–120. doi: 10.1016/j.diagmicrobio.2012.02.022
  48. De Zoysa A, Efstratiou A, Mann G, et al. Development, validation and implementation of a quadruplex real-time PCR assay for identification of potentially toxigenic corynebacteria. J Med Microbiol. 2016;65(12):1521–1527. doi: 10.1099/jmm.0.000382
  49. Borisova OYu, Pimenova AS, Chaplin AV, et al. An accelerated method of diphtheria gene diagnostics based on isothermal amplification to detect DNA of the causative agent. Journal of Microbiology, Epidemiology and Immunobiology. 2017;(5):24–32. (In Russ.). doi: 10.36233/0372-9311-2017-5-24-32
  50. Ruge DR, Dunning MF, Piazza TM, et al. Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters. Anal Biochem. 2011;411(2):200–209. doi: 10.1016/j.ab.2011.01.002
  51. Bagramyan K, Barash JR, Arnon SS, Kalkum M. Attomolar detection of botulinum toxin type A in complex biological matrices. PloS one. 2008;3(4):e2041. doi: 10.1371/journal.pone.0002041
  52. Martinović T, Andjelković U, Gajdošik MŠ, et al. Foodborne pathogens and their toxins. J Proteomics. 2016;147:226–235. doi: 10.1016/j.jprot.2016.04.029
  53. Cheng K, Sloan A, Li X, et al. Mass spectrometry-based Shiga toxin identification: An optimized approach. J Proteomics. 2018;180:36–40. doi: 10.1016/j.jprot.2017.06.003
  54. Silva CJ, Erickson-Beltran ML, Skinner CB, et al. Mass spectrometry-based method of detecting and distinguishing type 1 and type 2 Shiga-like toxins in human serum. Toxins. 2015;7(12):5236–5253. doi: 10.3390/toxins7124875
  55. Vila J, Juiz P, Salas C, et al. Identification of clinically relevant Corynebacterium spp., Arcanobacterium haemolyticum, and Rhodococcus equi by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(5): 1745–1747. doi: 10.1128/JCM.05821-11
  56. Аlatoom AА, Cazanave CJ, Cunningham SA, et al. Identification of non-diphtheriae corynebacterium by use of matrixassisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2012;50(1):160–163. doi: 10.1128/JCM.05889-11
  57. Patel R. MALDI-TOF mass spectrometry: transformative proteomics for clinical microbiology. Clin Chem. 2013;59(2):340–342. doi: 10.1373/clinchem.2012.183558
  58. Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407. doi: 10.1111/j.1574-6976.2011.00298.x
  59. Oviaño M, Ingebretsen A, Steffensen AK, et al. Evaluation of the rapidBACpro® II kit for the rapid identification of microorganisms directly from blood cultures using MALDI-TOF MS. bioRxiv. 2021. [preprint]. doi: 10.1101/2021.01.25.428200

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Miteva O.A., Yudina N.S., Myasnikov V.A., Stepanov A.V., Chepur S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies