应用人体下肢数学模型模拟接触爆炸的冲击波效应

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

人体肌肉骨骼系统的生物材料在接触爆炸的冲击波冲击下的破坏过程的有限元模拟模型已得到证实,可用于预测人体下肢损伤的性质和程度,包括设计特殊防爆鞋。分析了描述人体下肢生物组织物理力学特性及其在局部冲击波作用下行为的科学数据。作为人体下肢数学模型的一部分,对每种生物材料的机械性能进行了选择。对人体下肢的原始有限元模型进行了论证,并调整了其主要组成解剖结构之间的相互作用。利用机械和冲击波效应实验结果获得的数据对开发的计算模型进行了验证。创建了一个处理所获数据的专门程序,其中采用了一种算法来处理所获得的压力和加速度指数随时间变化的图形图像,以获得公差曲线。通过所开发的下肢模型的防护组合,进行了一系列模拟接触爆炸的数值计算。根据计算结果,获得了压力和加速度的公差曲线,创建了冲击波作用下人体下肢解剖结构行为的动画,并获得了压力场在其中传播的可视化效果。今后,所介绍的进行“虚拟”测试的方法可用于解决爆炸物处理下肢防御设备开发阶段测试的一些应用问题。总之,计算机建模技术的应用将有助于减少生产新防护产品样品的时间和成本,从而提高国家的防御能力。

作者简介

Alexey V. Denisov

Kirov Military Medical Academy

编辑信件的主要联系方式.
Email: vmeda-nio@mil.ru
ORCID iD: 0000-0002-8846-973X
SPIN 代码: 6969-0759

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Sergey V. Matveikin

Military Engineering Order of Kutuzov Academy named after Hero of the Soviet Union Lieutenant General of Engineering Troops D.M.Karbyshev

Email: sv-matv@bk.ru
ORCID iD: 0009-0002-9546-8425
SPIN 代码: 6269-0498

MD, Dr. Sci. (Tech.)

俄罗斯联邦, Krasnogorsk

Sergey V. Zaikin

Central Research Institute of Special Mechanical Engineering

Email: Sv.zaikin@mail.ru
ORCID iD: 0009-0002-9749-6665
SPIN 代码: 7428-5580

MD, Dr. Sci. (Tech.)

俄罗斯联邦, Khotkovo

Alexey V. Anisin

Kirov Military Medical Academy

Email: vmeda-nio@mil.ru
ORCID iD: 0000-0003-4555-953X
SPIN 代码: 1213-3797

MD, Cand. Sci. (Med.)

俄罗斯联邦, Saint Petersburg

Svetlana N. Vasilyeva

Kirov Military Medical Academy; Special Materials Corporation

Email: vmeda-nio@mil.ru
ORCID iD: 0009-0003-9731-6027
SPIN 代码: 1276-3137

engineer

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Evgeny A. Selivanov

111th Main State Center for Forensic Medical and Forensic Examinations

Email: Selivanove@yandex.ru
ORCID iD: 0000-0001-8791-3707
SPIN 代码: 4458-6793

forensic medical expert

俄罗斯联邦, Saint Petersburg

参考

  1. Darenskaya NG, Ushakov IB, Ivanov IV, et al. Extrapolation of the experimental data on man: principles, approaches, substantiation of methods and their use in physiology and radiobiology (manual). Moscow: Istoki; 2004. 232 p. (In Russ.) EDN: PXXXHX
  2. Cartner JL, Hartsell Z, Ricci W, Tornetta P. Can we trust ex vivo mechanical testing of freshfrozen cadaveric specimens? The effect of postfreezing delays. J Orthop. Trauma. 2011;25(8):459–461. doi: 10.1097/BOT.0b013e318225b875
  3. Gusentsov AO, Kildyushov EM. Human body simulator as an input parameter of a ballistic experiment. Forensic Medical Expertise. 2020;63(5):23–29. EDN: LZBQCZ doi: 10.17116/sudmed20206305123
  4. Coupland RM, Rothschild MA, Thali MJ. Wound Ballistics: Basics and applications. Berlin: Springer; 2008. 514 p.
  5. Kuz’min NN, Chernozemcev AV, Rybakov AP. Models to describe phenomena of impact of impactor on armoured waistcoat panel. Izvestiya TulGU. Tekhnicheskie nauki. 2014;12(1):174–181. (In Russ.) EDN: TKIWFZ
  6. Roberts JC, Ward EE, Merkle AC, O’Connor JV. Assessing behind armor blunt trauma in accordance with the national institute of justice standard for personal body armor protection using finite element modeling. J Trauma. 2007;62(5):1127–1133. doi: 10.1097/01.ta.0000231779.99416.ee
  7. Gricanov AI, Fomin NF, Minnulin IP, Fajzi N. Features of pathogenesis, clinic, diagnosis and treatment of mine-blast injuries. Military Medical Journal. 1990;(9):46–48. (In Russ.)
  8. Shapovalov VM, Gritsanov AI. Pathogenesis and principles of treatment of blast injuries. Modern medical technologies and prospects for the development of military traumatology and orthopedics. 2000:3–4. (In Russ.)
  9. Yamada H. Strength of Biological Materials. Williams and Wilkins, Baltimore; 1970. 297 р.
  10. Kemper AR, McNally C, Duma SM. Biofidelity of an original and modified SID-IIs matched cadaver and dummy compression tests. Biomed Sci Instrum. 2008;44:111–116.
  11. LS-DYNA. Keyword User’s Manual. Vol. II. Material Models. LS-DYNA R.11; 10/12/18 (rev.:10572). Livermore Software Technology Corporation (LSTC). 2018. 1207 р.
  12. Muizemnek AYu, Bogach AA. Mathematical modeling of impact and explosion processes in the LS-DYNA program: tutorial. Penza: Information and Publishing Center of PSU; 2005. 106 p. (In Russ.) EDN: QJOEKB
  13. Tremblay J. Impulse on Blast Deflectors from a Landmine Explosion. Valcartier, Quebec. Defence Research Establishment. 1998. Report No: DREV-TM-9814.
  14. Ottenio M, Tran D, Annaidh AN, et al. Strain rate and anisotropy effects on the tensile failure characteristics of human skin. J Mech Behav Biomed Mater. 2015;41:241–250. doi: 10.1016/j.jmbbm.2014.10.006
  15. Mooney M. A theory of large elastic deformation. Journal of Applied Physics. 1940;11(9):582–592. doi: 10.1063/1.1712836
  16. Macosko CW. Rheology: principles, measurement and applications. Wiley-VCH; 1994. 576 р.
  17. Reed MP, Rupp JD. An anthropometric comparison of current ATDs with the US adult population. Traffic Injury Prevention. 2013;14(7):703–705. doi: 10.1080/15389588.2012.752819

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.


##common.cookie##