基于聚丙烯酸酯银的止血药物对细菌的形态特征和能量状态的影响

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

评估MENORA Labs公司(以色列)的止血手术药物对Staphylococcus aureus, Pseudomonas aeruginosa和Escherichia coli的形态特征、活力和能量状态的影响,该制剂包括1%的聚丙烯酸不完全银盐水溶液,并添加了银纳米粒子。为了评估细胞的形态功能反应,使用了原子力显微镜和细菌三磷酸腺苷生物发光测定法。研究发现,细菌接触制剂后,不同细菌会产生多向反应。革兰氏阳性球菌的体积增大,相对表面积减小,从而减少了与药物的接触。这些变化可视为葡萄球菌对有毒化合物的适应机制之一。革兰氏阴性菌P.Aeruginosa和E.coli也会因 的存在而改变其大小,但在这两种情况下,细胞表面的相对面积和粗糙度都会增加,这可能表明这些微生物的适应潜力已耗尽。对使用过Haemoblock 药物的细胞中细菌的存活率和细胞内三磷酸腺苷含量的测定表明,大多数金黄色葡萄球菌都无法存活,而且药物的效果与浓度有关。假单胞菌接触未稀释的制剂会导致细菌死亡,E.coli接触浓度为10%的止血药物也会产生类似的效果。对所研究菌株的细胞活力和能量状态进行的评估证实了我们的假设,即葡萄球菌对的耐受性更强,即使在接触未稀释的制剂后仍能存活。在假单胞菌悬浮液中加入止血药物会导致其死亡,而稀释制剂对E.coli也有类似的效果。总体来说,细菌细胞壁的形态变化和与药物接触后三磷酸腺苷含量的减少,均证明了该药物针对某些临床上有重要代表意义的微生物起到抗菌效果。

全文:

受限制的访问

作者简介

Marina V. Kuznetsova

Institute of Ecology and Genetics of Microorganisms; Vagner Perm State Medical University

Email: mar@iegm.ru
ORCID iD: 0000-0003-2448-4823
SPIN 代码: 1463-1781

MD, Dr. Sci. (Medicine), associate professor

俄罗斯联邦, Perm; Perm

Larisa Yu. Nesterova

Institute of Ecology and Genetics of Microorganisms

Email: larisa.nesterova@bk.ru
ORCID iD: 0000-0003-2885-2777
SPIN 代码: 5288-7200

Cand. Sci. (Biology)

俄罗斯联邦, Perm

Alexey S. Vasilchenko

Institute of Ecological and Agricultural Biology

Email: a.s.vasilchenko@utmn.ru
ORCID iD: 0000-0001-9970-4881
SPIN 代码: 7966-2619

Cand. Sci. (Biology)

俄罗斯联邦, Tyumen

Marina P. Kuznetsova

Vagner Perm State Medical University

编辑信件的主要联系方式.
Email: marinapk92@gmai.com
ORCID iD: 0000-0001-8403-4926
SPIN 代码: 4089-8008

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Perm

Vladimir A. Samartsev

Vagner Perm State Medical University

Email: savarcev-v@mail.ru
ORCID iD: 0000-0001-6171-9885
SPIN 代码: 5655-5223

MD, Dr. Sci. (Medicine), professor

俄罗斯联邦, Perm

参考

  1. Annabi N, Tamayol A, Shina SR, et al. Surgical materials: Current challenges and nano-enabled solutions. Nano Today. 2014;9(5):574–589. doi: 10.1016/j.nantod.2014.09.006
  2. Trufakina LM. Properties of polymer composites on the basis polyvinyl alcohol. Bulletin of the Tomsk Polytechnic University. Chemistry and Сhemical Еechnologies. 2014;325(3):92–97. (In Russ.) EDN: SZGHFN
  3. Fahmy A, Eisa WH, Yosef M, Hassan A. Ultra-thin films of polyacrylic acid/silver nanocomposite coatings for antimicrobial applications. Journal of Spectroscopy. 2016;(5):1–11. doi: 10.1155/2016/7489536
  4. Rejepov DT, Vodyashkin AA, Sergorodceva AV, Stanishevskiy YM. Biomedical applications of silver nanoparticles (review). Drug development & registration. 2021;10(3):176–187. EDN: AFLZNU doi: 10.33380/2305-2066-2021-10-3-176-187
  5. Plotkin AV, Pokrovskoj EZh, Voronova GV, Menglet KA. The evaluation of the effectivity of hemostatic activity of haemoblock for local topical use haemoblock in different surgical situations. Multicenter clinical trials. Bulletin of Modern Clinical Medicine. 2015;8(1):56–61. EDN: THWGPP
  6. Erokhin PS, Utkin DV, Kuznetsov OS, et al. Application of atomic force microscopy for detection of influence of antibiotic upon the microbial cell (on the model of e. Coli and I generation cephalosporins). Izvestiya of Saratov University. New Series. Series: Physics. 2013;13(2):28–33. (In Russ.) EDN: TFMJYZ
  7. Vasilchenko AS, Dymova VV, Kartashova OL, Sycheva MV. Morphofunctional reaction of bacteria treated with antimicrobial peptides derived from farm animal platelets. Probiotics and Antimicrobal Proteins. 2015;7(1):60–65. doi: 10.1007/s12602-014-9172-4
  8. Efremenko EN, Stepanov NA, Senko OV, et al. Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catalysis in Industry. 2011;3(1):41–46. EDN: OHVTWV doi: 10.1134/S207005041101003X
  9. Sánchez MC, Llama-Palacios A, Marín MJ. Validation of ATP bioluminescence as a tool to assess antimicrobial effects of mouthrinses in an in vitro subgingival-biofilm model. Med Oral, Patol Oral, Cir Bucal. 2013;18(1):86–92. doi: 10.4317/medoral.18376
  10. Furr JR, Russell AD, Turner TD, Andrews A. Antibacterial activity of actisorb plus, actisorb and silver nitrate. J Hosp Infect. 1994;27(3):201–208. doi: 10.1016/0195-6701(94)90128-7
  11. Brown T, Smith D. The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Letters. 1976;(3):155–162.
  12. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182. doi: 10.1016/j.jcis.2004.02.012
  13. Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
  14. Abbas WS, Atwan ZW, Abdulhussein ZR, Mahdi MA. Preparation of silver nanoparticles as antibacterial agents through DNA damage. Materials Technology. 2019;34(14):867–879. doi: 10.1080/10667857.2019.1639005
  15. Qamer S, Romli MH, Che-Hamzah F, et al. Systematic review on biosynthesis of silver nanoparticles and antibacterial activities: Application and theoretical perspectives. Molecules. 2021;26(16):5057. doi: 10.3390/molecules26165057
  16. Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):23–46. doi: 10.1088/0957-4484/16/10/059
  17. Wang G, Jin W, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species. Biomaterials. 2017;124:25–34. doi: 10.1016/j.biomaterials.2017.01.028
  18. Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev. 2006;35(9):780–789. doi: 10.1039/b515219b
  19. The effect of the surgical hemostatic product “Hemoblock” tm on in vitro bacterial colonization. Clinical Microbiology and Antimicrobial Chemotherapy. 2020;22(1):67–70. EDN: LIZUJJ doi: 10.36488/cmac.2020.1.67-70
  20. Ojkic N,Serbanescu D, Banerjee S. Surface-to-volume scaling and aspect ratio preservation in rod-shaped bacteria. Elife. 2019;8:e47033. doi: 10.7554/eLife.47033
  21. Neumann G, Veeranagouda Y, Karegoudar TB, et al. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles. 2005;9(2): 163–168. doi: 10.1007/s00792-005-0431-x
  22. Gavrilova IA, Zhavnerko GK, Titov LP. Morphological changes in pseudomonas aeruginosa acted upon by biocide based on alkylmethylbenzylammonium chloride and polyhexamethylenguanidine. Reports of the National Academy of Sciences of Belarus. 2013;5:81–87. EDN: WHHLYN
  23. Turner R, Vollmer W, Foster S. Different walls for rods and balls: the diversity of peptidoglycan. Mol Microbiol. 2014;91(5):862–874. doi: 10.1111/mmi.12513
  24. Matias VR, Al-Amoudi A, Dubochet J, Beveridge TJ. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J Bacteriol. 2003;185(20):6112–6118. doi: 10.1128/jb.185.20.6112-6118.2003
  25. Torrens G, Escobar-Salom M, Pol-Pol E, et al. Comparative analysis of peptidoglycans from Pseudomonas aeruginosa isolates recovered from chronic and acute infections. Front Microbiol. 2019;10:1868. doi: 10.3389/fmicb.2019.0186
  26. Jung WK, Koo HC, Kim KW, et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74(7):2171–2178. doi: 10.1128/AEM.02001-07
  27. Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–668. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
  28. Yang Y, Zhang Z, Wan M, et al. A facile method for the fabrication of silver nanoparticles surface decorated polyvinyl alcohol electrospun nanofibers and controllable antibacterial activities. Polymers (Basel). 2020;12(11):2486. doi: 10.3390/polym12112486

补充文件

附件文件
动作
1. JATS XML
2. Fig. Atomic force microscopy images of bacterial cells before (a) and after (b) one-hour exposure to hemostatic preparation

下载 (564KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 77762 от 10.02.2020.