COVID-19 in the central nervous system: routes of entry and influence on gliomagenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The pathogenesis of infection of the central nervous system (CNS) with SARS-CoV2 and nervourological complications are still poorly understood, as well as the link of viral infection with the risk and the course of gliomas.

The aim. Evaluating of the possible involvement of Basigin, NRP1, Cathepsin L and transmembrane proteases TMPRSS2 and TMPRSS4 in coronavirus infection of neurons and gliomagenesis.

Мaterial and methods. histological and immunohistochemical researches with antibodies to Cathepsin L, TMPRSS2, TMPRSS4, NRP1, Vasidin, SARS-CoV-2 of the brain of 6 patients with COVID-19, 3 patients of the «precovid period» (control group) and gliomas of 7 patients operated in 2024.

The results of the research demonstraded that the expression of Basigin and TMPRSS2 was significantly higher in the group of patients with gliomas compared with the other groups (for Basigin pgliomas / COVID-19 = 0.006; pgliomas / control group = 0.038; for TMPRSS2 pgliomas / COVID-19 = 0.040; pgliomas / control group = 0.006). In the group of patients with COVID-19, a negative correlation was found between the prevalence of Cathepsin L and SARS-CoV-2 expression (rs = -0.37, p = 0.009), and Basigin was expressed in 5–25% of glial cells. Cathepsin L and TMPRSS4 demonstrated moderate negative associations in the groups of patients with COVID-19 and gliomas.

Conclusion: Basigin, NRP1, Cathepsin L, TMPRSS2 and TMPRSS4 cannot be used as alternative pathways for more effective penetration of SARS-CoV-2 into neurons. The expression of Basigin and TMPRSS2 was the highest in gliomas significantly. Probably, the coexpression of the virus with Basigin weakens the immunosuppression of tumors; it mays to increase the incidence or recurrence of tumors in patients with COVID-19.

Full Text

Restricted Access

About the authors

Lyubov B. Mitrofanova

Federal State Budgetary Institution “V.A. Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: lubamitr@yandex.ru
ORCID iD: 0000-0003-0735-7822

Head of the Department of Pathological Anatomy with Clinic, Chief Researcher, Pathomorphology Research Laboratory, Head of the Pathomorphology Service, Pathologist of the Pathoanatomical Department of the University Clinic, Doctor of Medical Sciences, Professor

Russian Federation, Akkuratova str., 2, Saint Petersburg, 197341

Igor A. Makarov

Federal State Budgetary Institution “V.A. Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation

Email: doctormakarovia@gmail.com
ORCID iD: 0000-0001-6175-8403

Аssistant, Department of Pathological Anatomy with clinic, Pathologist of the Pathology Department of the University Clinic, Candidate of Medical Sciences

Russian Federation, Akkuratova str., 2, Saint Petersburg, 197341

Ksenia A. Guseva

Federal State Budgetary Institution “V.A. Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation

Email: ksuha.gus@yandex.ru
ORCID iD: 0009-0009-4477-9128

Clinical Resident, Department of Pathological Anatomy with clinic

Russian Federation, Akkuratova str., 2, Saint Petersburg, 197341

Irina A. Danilova

Federal State Budgetary Institution “V.A. Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation

Email: imd@rambler.ru
ORCID iD: 0000-0003-0865-5936

Pathologist, Professor, Department of Pathological Anatomy of the Clinic of the Ministry of Health of the Russian Federation, Doctor of Medical Sciences, Professor

Russian Federation, Akkuratova str., 2, Saint Petersburg, 197341

Dmitry A. Gulyaev

Federal State Budgetary Institution “V.A. Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation

Email: gulyaevd@mail.ru
ORCID iD: 0000-0002-5509-5612

Professor of the Department of Neurosurgery, Head of Neurosurgical Department No.5, Neurosurgeon, Neurosurgical Department No.5, Head of the Research Institute of Integrative Neurosurgical Technologies, Doctor of Medical Sciences, Professor, Associate Professor

Russian Federation, Akkuratova str., 2, Saint Petersburg, 197341

References

  1. Pezzini A., Padovani A. Lifting the mask on neurological manifestations of COVID19. Nat Rev Neurol. 2020; 16 (11): 636–44.
  2. Helbok R., Chou S.H., Beghi E. et al. NeuroCOVID: it’s time to join forces globally. Lancet Neurol. 2020; 19 (10): 805–6.
  3. Davis H.E., Assaf G.S., McCorkell L., Wei H., Low R.J., Re’em Y., Redfield S., Austin J.P., & Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EclinicalMedicine. 2021; 38.
  4. Zeng N., Zhao Y.-M., Yan W., Li C., Lu Q.-D., Liu L., Ni S.-Y. et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: Call for research priority and action. Molecular Psychiatry. 2023; 28 (1): 423–33. https://10.1038/s41380-022-01614-7
  5. Ma Y., Deng J., Liu Q., Du M., Liu M., & Liu J. Long-Term Consequences of Asymptomatic SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2023; 20 (2): 1613. https://10.3390/ijerph20021613
  6. Comeau D., Martin M., Robichaud G.A., Chamard-Witkowski L. Neurological manifestations of post-acute sequelae of COVID-19: which liquid biomarker should we use? Front Neurol. 2023; 14: 1233192. doi: 10.3389/fneur.2023.1233192. PMID: 37545721; PMCID: PMC10400889.
  7. Yang L., Kim T.W., Han Y., Nair M.S., Harschnitz O., Zhu J., Wang P. et al. SARS-CoV-2 infection causes dopaminergic neuron senescence. Cell Stem Cell. 2024; 31 (2): 196–211. https:10.1016/j.stem.2023.12.012. Epub 2024. PMID: 38237586; PMCID: PMC10843182.
  8. Lyoo K.S., Kim H.M., Lee B., Che Y.H., Kim S.J., Song D., Hwang W. et al. Direct neuronal infection of SARS-CoV-2 reveals cellular and molecular pathology of chemosensory impairment of COVID-19 patients. Emerg Microbes Infect. 2022; 11 (1): 406–11. https://doi: 10.1080/22221751.2021.2024095. PMID: 34962444; PMCID: PMC8803065.
  9. Митрофанова Л.Б., Воробьева О.М., Стерхова К.А., Макаров И.А., Расулов З.М., Пальцев А., Васькова Н.Л., Гуляев Д.А. Морфологическое и молекулярно-биологическое исследование головного мозга у пациентов II и III волн COVID-19 и в постковидном периоде. Medline. ru. Биомедицинский журнал. 2023; 24: 1258–74. [Mitrofanova L.B., Vorobyova O.M., Sterkhova K.A., Makarov I.A., Rasulov Z.M., Paltsev A., Vaskova N.L., Gulyaev D.A. Morphological and molecular biological study of the brain in patients of the II and III waves of COVID-19 and in the post-Covid period. Medline. ru. Biomedical J. 2023; 24: 1258-74 (in Russian)]
  10. Wang K., Chen W., Zhang Z., Deng Y., Lian J.Q., Du P., Wei D. et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020; 5 (1): 283. doi: 10.1038/s41392-020-00426-x. PMID: 33277466; PMCID: PMC7714896.
  11. Latini A. et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes 11. 2020; 1010.
  12. Behl T., Kaur I., Aleya L., Sehgal A., Singh S., Sharma N., Bhatia S. et al. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. Sci Total Environ. 2022; 808: 152072. https://doi: 10.1016/j.scitotenv
  13. Iadecola C., Anrather J., Kamel H. Effects of COVID-19 on the Nervous System. Cell. 2020, 183 (1): 16–27.e1. https://doi: 10.1016/j.cell.2020.08.028. Epub 2020. PMID: 32882182; PMCID: PMC7437501.
  14. Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA. 2020; 117: 11727–34.
  15. Tan Q., Fu J., Liu Z., Deng H., Zhang L., He J., Li X., Fu J. Impacts of transmembrane serine protease 4 expression on susceptibility to severe acute respiratory syndrome coronavirus 2. Chin Med J. (Engl). 2023; 136 (7): 860–2. https://doi: 10.1097/CM9.0000000000002443. PMID: 36914950; PMCID: PMC10150844.
  16. Zhong S., Yang W., Zhang Z. et al. Association between viral infections and glioma risk: a two-sample bidirectional Mendelian randomization analysis. BMC Med 21. 2023; 427.
  17. Rollison D.E. et al. Serum antibodies to JC virus, BK virus, simian virus 40, and the risk of incident adult astrocytic brain tumors. Cancer Epidemiol Biomarkers Prev. 2003; 12 (5): 460–3.
  18. Dziurzynski K. et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 2012; 14 (3): 246–55.
  19. Qiao J., Li W., Bao J., Peng Q., Wen D., Wang J., Sun B. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun. 2020; 533 (4): 867–71. https://doi: 10.1016/j.bbrc.2020.09.042. Epub 2020; PMID: 33008593; PMCID: PMC7489930.
  20. Bian H. et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. MedRxiv. 2020; 20040691.
  21. Shilts J., Crozier T.W.M., Greenwood E.J.D. et al. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep. 2021; 11: 413.
  22. Kettunen P., Lesnikova A., Räsänen N., Ojha R., Palmunen L., Laakso M., Lehtonen Š. et al. SARS-CoV-2 Infection of Human Neurons Is TMPRSS2 Independent, Requires Endosomal Cell Entry, and Can Be Blocked by Inhibitors of Host Phosphoinositol-5 Kinase. J. Virol. 2023; 97 (4). https://doi: 10.1128/jvi.00144-23.
  23. Tohda C., Tohda M. Extracellular cathepsin L stimulates axonal growth in neurons. BMC Res Notes. 2017; 10 (1): 613. https://doi: 10.1186/s13104-017-2940-y. PMID: 29169406; PMCID: PMC5701428.
  24. Linda Ma, Silin Wu, Aaron M. Gusdon, Hua Chen, Heng Hu, Atzhiry S. Paz et al. Ren Cathepsin L and acute ischemic stroke: A mini-review Frontiers in Stroke. 2022; 1.
  25. Prasad K., Ahamad S., Gupta D., Kumar V. Targeting cathepsins: A potential link between COVID-19 and associated neurological manifestations. Heliyon. 2021. 10.1016/j.heliyon.2021.e08089' target='_blank'>https://doi: 10.1016/j.heliyon.2021.e08089. Epub 2021. PMID: 34604555; PMCID: PMC8479516.
  26. Krasemann S., Haferkamp U., Pfefferle S., Woo M.S., Heinrich F., Schweizer M., Appelt-Menzel A. et al. The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports. 2022; 17 (2): 307–20. https://doi: 10.1016/j.stemcr.2021.12.011. Epub 2022. PMID: 35063125; PMCID: PMC8772030.
  27. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–80.e8. https://doi: 10.1016/j.cell.2020.02.052. Epub 2020. PMID: 32142651; PMCID: PMC7102627.
  28. Gomazkov O.A. Neuropilin Is a New Player in the Pathogenesis of COVID-19. Neurochem. J. 2022; 16: 130–5.
  29. Davies, J., Randeva, H.S., Chatha, K., Hall, M., Spandidos, D., Karteris, E., and Kyrou, I., Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 2020; 22 (5): 4221–6.
  30. Ludovico Cantuti-Castelvetri et al.Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020; 370: 856–60.
  31. Choi S.Y., Shin H.C., Kim S.Y., Park Y.W. Role of TMPRSS4 during cancer progression. Drug News Perspect. 2008; 21: 417–23. https://doi: 10.1358/dnp.2008.21.8.1272135.
  32. Lahiry P., Racacho L., Wang J., Robinson J.F., Gloor G.B., Rupar C.A. et al. A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder. Orphanet J. Rare Dis. 2013; 8: 126. https://doi: 10.1186/1750-1172-8-126.
  33. Wallrapp C., Hahnel S., Muller-Pillasch F., Burghardt B., Iwamura T., Ruthenburger M. et al. A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer Res. 2000; 60: 2602–6.
  34. Zang R., Gomez Castro M.F., McCune B.T., Zeng Q., Rothlauf P.W., Sonnek N.M. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020; 5. https://doi: 10.1126/sciimmunol.abc3582.
  35. Khan I., Hatiboglu M.A. Can COVID-19 induce glioma tumorogenesis through binding cell receptors? Med Hypotheses. 2020; 144: 110009.
  36. Chen A., Zhao W., Li X., Sun G., Ma Z., Peng L., Shi Z., Li X., Yan J. Comprehensive Oncogenic Features of Coronavirus Receptors in Glioblastoma Multiforme. Front Immunol. 2022; 13: 840785. https://doi: 10.3389/fimmu.2022.840785. PMID: 35464443; PMCID: PMC9020264.
  37. Dong Q., Li Q., Duan L. et al. Expressions and significances of CTSL, the target of COVID-19 on GBM. J. Cancer Res Clin Oncol. 2022; 148 (3): 599–608.
  38. Kanekura T. CD147/Basigin Is Involved in the Development of Malignant Tumors and T-Cell-Mediated Immunological Disorders via Regulation of Glycolysis. Int. J. Mol. Sci. 2023; 24.
  39. Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J. Biochem. 2016; 159, 481–90.
  40. Yang H., Wang J., Li Y., Yin Z.J., Lv T.T., Zhu P., Zhang Y. CD147 modulates the differentiation of T-helper 17 cells in patients with rheumatoid arthritis. APMIS. 2017; 125, 24–31.
  41. Luo L, Zheng Y, Li M, Lin X, Li X, Li X, Cui L, Luo H. TMPRSS2 Correlated With Immune Infiltration Serves as a Prognostic Biomarker in Prostatic Adenocarcinoma: Implication for the COVID-2019. Front Genet. 2020; 11:575770. https://doi: 10.3389/fgene.2020.575770. PMID: 33193689; PMCID: PMC7556306.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient from the control group, 65 years old. Expression of NRP1 (а), basigin (б), cathepsin L (в), TMPRSS2 (г), TMPRSS4 (д) in the temporal lobe of the brain; ×200

Download (200KB)
3. Fig. 2. Patient with COVID-19, 67 years old. Hematoxylin and eosin staining of the temporal lobe cortex (а), expression of NRP1 (б), basigin (в), cathepsin L (г), TMPRSS2 (д), TMPRSS4 (е); ×200

Download (365KB)
4. Fig. 3. Patient with small cell glioblastoma Grade 4, 48 years old. а – hematoxylin and eosin staining; expression of NRP1 (б), basigin (в), cathepsin L (г), TMPRSS2 (д), TMPRSS4 (е); ×200

Download (385KB)
5. Fig. 4. Expression of SARS-CoV2: а – in an 86-year-old patient with COVID-19 on neurons and glial cells of the temporal lobe cortex; ×100; б – on astrocytoma cells, Grade 4; ×200

Download (241KB)
6. Fig. 5. Statistically significant differences in the expression of the studied markers between groups

Download (135KB)
7. Fig. 6. Heat matrices of correlations between the studied IHCI markers in groups of patients with COVID-19 and patients with gliomas

Download (175KB)
8. Table 1 Clinical data of the examined patients

Download (117KB)
9. Table 2 The average relative number of cells of the temporal lobe cortex (%) with the expression of immunohistochemical markers in patients with coronavirus infection and gliomas

Download (112KB)

Copyright (c) 2025 Russkiy Vrach Publishing House