Study of memristor structures based on copper and tin oxides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article describes a method for forming a memristor structure by spray pyrolysis of tin oxide and electrochemical deposition of copper oxide. The results of measuring the electrical characteristics of fabricated memristor are discussed, and the factors affecting the reproducibility of its properties are analyzed.

Texto integral

Acesso é fechado

Sobre autores

D. Permyakov

Воронежский государственный технический университет

Autor responsável pela correspondência
Email: Dima.P.S@yandex.ru

аспирант кафедры твердотельной электроники

Rússia, Воронеж

A. Strogonov

Воронежский государственный технический университет

Email: andreistrogonov@mail.ru

профессор кафедры твердотельной электроники

Rússia, Воронеж

Bibliografia

  1. Marani R., Gelao G., Perri A. G. A Review On Memristor Applications // Italian National Research Council, 2015.
  2. Muhammad K. Review on Various Memristor Models, Characteristics, Potential Applications, and Future Works // Trans. Electr. Electron. Mater. 2019. V.20, no. 4. PP. 289–298.
  3. Moreira E. N., Kendall J., Maruyama H., Nino J. C. Simplified sol-gel processing method for amorphous TiOx Memristors // Journal of Electroceramics. 2020. V. 44. PP. 52–58.
  4. OrtegaReyes L., AvilaGarcia A. Memristors based on thermal copper oxide // Journal of Materials Science: Materials in Electronics. 2020. V. 31. PP. 7445–7454.
  5. Chen S., Noori S., Villena M. A. Memristive Electronic Synapses Made by Anodic Oxidation // Chem. Mater. 2019. V. 31, no. 20. PP. 8394–8401.
  6. Dongale D. T., Mohite S. V., Bagade A. A. Development of Ag/WO3/ITO Thin Film Memristor Using Spray Pyrolysis Method // Electron. Mater. Lett. 2015. V. 30, no. 35, PP. 1–5.
  7. Ali S., Khan S., Khan A. Memristor Fabrication Through Printing // IEEE Access. 2021. V. 9. PP. 95970–95985.
  8. Yazdanparast S. Resistance switching of electrodeposited cuprous oxide. Doctoral Dissertations. 2424, 2015.
  9. Mohammad B., Jaoude M. A., Kumar V. State of the art of metal oxide memristor devices // Nanotechnol Rev. 2016. V. 5, no. 3. PP. 311–329.
  10. Насыров К. А., Гриценко В. А. Механизмы переноса электронов и дырок в диэлектрических пленках УФН. 2013. Т. 183. С. 1099–1114.
  11. Гудков А., Гогин А., Кик М. Мемристоры – новый тип элементов резистивной памяти для наноэлектроники // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2014. № 9.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray diffraction of SnO2 film

Baixar (392KB)
3. Fig. 2. X-ray diffraction of Cu2O film

Baixar (309KB)
4. Fig. 3. Memristor based on SnO2 : Sb /Cu2O/Ag: a - structure; b - zone diagram

Baixar (194KB)
5. Fig. 4. Hysteresis of SnO2 / Cu2O / Ag memristor

Baixar (160KB)
6. Fig. 5. HRS dependence: a - in coordinates ln(J) (ln(A / cm2)) on F (B / m); b - in coordinates ln(F / J) (ln(A ∙ cm-2 ∙ B-1 ∙ m)) on F1 / 2 (B1 / 2 / m1 / 2)) on F1 / 2 (B1 / 2 / m1 / 2))

Baixar (329KB)

Declaração de direitos autorais © Permyakov D., Strogonov A., 2023