Study of memristor structures based on copper and tin oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article describes a method for forming a memristor structure by spray pyrolysis of tin oxide and electrochemical deposition of copper oxide. The results of measuring the electrical characteristics of fabricated memristor are discussed, and the factors affecting the reproducibility of its properties are analyzed.

Full Text

Restricted Access

About the authors

D. Permyakov

Воронежский государственный технический университет

Author for correspondence.
Email: Dima.P.S@yandex.ru

аспирант кафедры твердотельной электроники

Russian Federation, Воронеж

A. Strogonov

Воронежский государственный технический университет

Email: andreistrogonov@mail.ru

профессор кафедры твердотельной электроники

Russian Federation, Воронеж

References

  1. Marani R., Gelao G., Perri A. G. A Review On Memristor Applications // Italian National Research Council, 2015.
  2. Muhammad K. Review on Various Memristor Models, Characteristics, Potential Applications, and Future Works // Trans. Electr. Electron. Mater. 2019. V.20, no. 4. PP. 289–298.
  3. Moreira E. N., Kendall J., Maruyama H., Nino J. C. Simplified sol-gel processing method for amorphous TiOx Memristors // Journal of Electroceramics. 2020. V. 44. PP. 52–58.
  4. OrtegaReyes L., AvilaGarcia A. Memristors based on thermal copper oxide // Journal of Materials Science: Materials in Electronics. 2020. V. 31. PP. 7445–7454.
  5. Chen S., Noori S., Villena M. A. Memristive Electronic Synapses Made by Anodic Oxidation // Chem. Mater. 2019. V. 31, no. 20. PP. 8394–8401.
  6. Dongale D. T., Mohite S. V., Bagade A. A. Development of Ag/WO3/ITO Thin Film Memristor Using Spray Pyrolysis Method // Electron. Mater. Lett. 2015. V. 30, no. 35, PP. 1–5.
  7. Ali S., Khan S., Khan A. Memristor Fabrication Through Printing // IEEE Access. 2021. V. 9. PP. 95970–95985.
  8. Yazdanparast S. Resistance switching of electrodeposited cuprous oxide. Doctoral Dissertations. 2424, 2015.
  9. Mohammad B., Jaoude M. A., Kumar V. State of the art of metal oxide memristor devices // Nanotechnol Rev. 2016. V. 5, no. 3. PP. 311–329.
  10. Насыров К. А., Гриценко В. А. Механизмы переноса электронов и дырок в диэлектрических пленках УФН. 2013. Т. 183. С. 1099–1114.
  11. Гудков А., Гогин А., Кик М. Мемристоры – новый тип элементов резистивной памяти для наноэлектроники // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2014. № 9.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction of SnO2 film

Download (392KB)
3. Fig. 2. X-ray diffraction of Cu2O film

Download (309KB)
4. Fig. 3. Memristor based on SnO2 : Sb /Cu2O/Ag: a - structure; b - zone diagram

Download (194KB)
5. Fig. 4. Hysteresis of SnO2 / Cu2O / Ag memristor

Download (160KB)
6. Fig. 5. HRS dependence: a - in coordinates ln(J) (ln(A / cm2)) on F (B / m); b - in coordinates ln(F / J) (ln(A ∙ cm-2 ∙ B-1 ∙ m)) on F1 / 2 (B1 / 2 / m1 / 2)) on F1 / 2 (B1 / 2 / m1 / 2))

Download (329KB)

Copyright (c) 2023 Permyakov D., Strogonov A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies