Features of Additive Laser Processing for the Surface Layer Hardness Increase on Titanium Samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article presents the research results on the control of the mechanical and functional titanium parameters by an additive surface laser micro-treatment with an additional graphite layer under the influence of near-IR laser radiation. The results of experimental studies on selection of the optimal laser radiation parameters for increasing the hardness and wear resistance of a model titanium sample are provided. The results demonstrate significantly increased hardness of the treated area (up to 9.3 times) and a decreased abrasive wear resistance rate by about 2 times compared to the original sample.

Full Text

Restricted Access

About the authors

X. A. Egorova

ITMO University

Author for correspondence.
Email: photonics@technosphera.ru
ORCID iD: 0000-0002-4228-0392

PhD Student, Research Engineer, Institute of Laser Technologies

Russian Federation, Saint Petersburg

K. A. Rozanov

ITMO University

Email: photonics@technosphera.ru

Student, Institute of Laser Technologies

Russian Federation, Saint Petersburg

A. I. Kiian

INSCIENCE

Email: photonics@technosphera.ru

Engineer

Russian Federation, Saint Petersburg

D. A. Sinev

ITMO University

Email: photonics@technosphera.ru

Candidate of Technical Sciences, Assistant, Institute of Laser Technologies

Russian Federation, Saint Petersburg

References

  1. Knunyants I. L., Zefirov N. S. Chemical Encyclopedia: in 5 volumes / Editorial Board.: Zefirov N. S. (chief editor) and others – M.: Great Russian Encyclopedia. 1995; 4:641.(In Russ.). Кнунянц И. Л., Зефиров Н. С. Химическая энциклопедия: в 5 т. /Редкол.: Зефиров Н. С. (гл. ред.) и др. – М.: Большая Российская энциклопедия. 1995; 4:641.
  2. Kazachenok M. S., Panin A. V., Ivanov Yu. F., Pochivalov Yu. I., Valiev R. Z. The effect of thermal annealing on the mechanical behavior of technical titanium VT1-0, having a submicrocrystalline structure in the surface layer or in the volume of the material. Physical mesomechanics. 2005; 8(4): 37–47. doi: 10.24411/1683-805X-2005-00024. (In Russ.). Казаченок М. С., Панин А. В., Иванов Ю. Ф., Почивалов Ю. И., Валиев Р. З. Влияние термического отжига на механическое поведение технического титана ВТ1-0, имеющего субмикрокристаллическую структуру в поверхностном слое или в объеме материала. Физическая мезомеханика. 2005; 8(4): 37–47.
  3. Grum J. Comparison of different techniques of laser surface hardening / Grum J // Journal of Achievements in Materials and Manufacturing Engineering. 2007; Vol. 24:17–25.
  4. Ali Khorram, Akbar Davoodi Jamaloei. Nd : YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation. Optics and Laser Technology. 2019; 119: 105617. doi: 10.1016/J.OPTLASTEC.2019.105617
  5. Mahmoud Moradi, Hossein Arabi. Enhancement of surface hardness and metallurgical properties of AISI 410 by laser hardening process; diode and Nd : YAG lasers. Optik. 2019; 188:277–286. doi: 10.1016/j.ijleo.2019.05.057
  6. N. Zarrinfar, P. H. Shipway, A. R. Kennedy, A. Saidi. Carbide stoichiometry in TiC and Cu-TiCx produced by self-propagating high-temperature synthesis. Scripta Materialla. 2002; 46:121–126. doi: 10.1016/S1359-6462(01)01205-2
  7. Kiparisov S. S., Levinsky Yu.V., Petrov A. P. Titanium carbide: preparation, properties, application. – M.: Metallurgy, 1987, 216 p. (In Russ.). Кипарисов С. С., Левинский Ю. В., Петров А. П. Карбид титана: получение, свойства, применение. – М.: Металлургия, 1987, 216 с.
  8. Maharjan N, Zhou W, Wu N. Direct laser hardening of AISI 1020 steel under controlled gas atmosphere. Surface and Coatings Technology. 2020;15:125399. doi: 10.1016/j.surfcoat.2020.125399.
  9. Nair A. M., Muvvala G., Nath A. K. A study on in-situ synthesis of TiCN metal matrix composite coating on Ti-6Al-4V by laser surface alloying process. Journal of Alloys and Compounds. 2019; 810:151901. doi: 10.1016/j.jallcom.2019.151901
  10. Shi J, Wang Y. Development of metal matrix composites by laser-assisted additive manufacturing technologies: a review. Journal of Materials Science. 2020; 55(23):9883–917. doi: 10.1007/s10853-020-04730-3.
  11. Veiko V. P., Andreeva Y., Van Cuong L., Lutoshina D., Polyakov D., Sinev D., Mikhailovskii V., Kolobov Y. R., Odintsova G. Laser paintbrush as a tool for modern art. Optica. 2021 May 20;8(5):577–85. doi: 10.1364/OPTICA.420074.
  12. Veiko V., Luong V., Odintsovo G., Romanov V., Yatsuk R. Optimization of the technology of color laser marking of metals for industrial applications. In the VII International Conference on Photonics and Information Optics: Collection of scientific papers. Moscow: NRU MEPhI 2018 (p. 468). (In Russ.). Вейко В., Лыонг В., Одинцова Г., Романов В., Яцук Р. Оптимизация технологии цветной лазерной маркировки металлов для промышленного применения. In VII международная конференция по фотонике и информационной оптике: Сборник научных трудов. М.: НИЯУ МИФИ 2018 (p. 468). doi: 10.22184/1993-7296.2018.12.6.568.575
  13. Veiko V. P., Volkov S. A., Zakoldaev R. A., Sergeev M., Samokhvalov A., Kostyuk G. K., Milyaevka. Laser-induced microplasma as a tool for microstructuring transparent media. Quantum electronics. 2017;47(9):842–8. (In Russ.). Вейко В. П., Волков С. А., Заколдаев Р. А., Сергеев М. М., Самохвалов А. А., Костюк Г. К., Миляев К. А. Лазерно-индуцированная микроплазма как инструмент микроструктурирования прозрачных сред. Квантовая электроника. 2017;47(9):842–8.
  14. Polyushkin N. G. Fundamentals of the theory of friction, wear and lubrication: textbook. Stipend. – Krasnoyarsk: KSAU. 2013; 192:4. (In Russ.). Полюшкин Н. Г. Основы теории трения, износа и смазки. – Красноярск: КГАУ. 2013; 192:4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimentation: a) A visual diagram of the processing, and the dependence of the hardness value on the pretreatment parameters during structuring with a power of 10 W (b) and 20 W(c). The solid line is the hardness value of the original titanium sample (210 MPa [1]), the dotted line is the hardness values of the oxide layers formed the pretreatment parameters specified in [11]

Download (176KB)
3. Fig. 2. Diagrams of the dependence of the Vickers hardness of structured samples on the parameters of laser treatment with graphite powder with a different number of treatments

Download (853KB)
4. Fig. 3. Results of contact profilometry of group tests carried out in an air environment with a load of 5.0 N, a sample rotation speed of 60 rpm, a counterbody rotation speed of 600 rpm and an exposure time of 60 s

Download (243KB)

Copyright (c) 2023 Egorova X.A., Rozanov K.A., Kiian A.I., Sinev D.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies