Исследование процесса лазерной очистки металлопроката от окалины
- Авторы: Журба Д.В.1,2, Журба В.М.2, Вейко В.П.1, Пуйша А.Э.2
-
Учреждения:
- Университет ИТМО
- ООО «НПП ВОЛО»
- Выпуск: Том 18, № 6 (2024)
- Страницы: 436-449
- Раздел: Технологии и технологическое оборудование
- URL: https://journals.eco-vector.com/1993-7296/article/view/642241
- DOI: https://doi.org/10.22184/1993-7296.FRos.2024.18.6.436.449
- ID: 642241
Цитировать
Полный текст



Аннотация
В статье представлены результаты исследования процесса лазерной очистки металлопроката в режимах воздействия, не приводящих к нагреву окалины выше температуры ее плавления. Выявлена и обоснована возможность разрушения прокатной окалины за счет термохимических реакций в окалине и последующего термомеханического разрушения. Проведен поиск и оптимизация режимов лазерного воздействия для увеличения эффективности очистки. Для более полного описания процесса лазерной очистки уделено внимание структуре прокатной окалины и описаны особенности ее формирования и вероятные фазовые превращения под действием лазерного нагрева. Экспериментально обнаружена приводящая к термомеханическому разрушению окалины область режимов лазерной обработки в диапазоне длительностей воздействия 30–400 мкс и плотностей мощности 50–750 кВт / см2. Процесс лазерной очистки от окалины за счет термомеханического разрушения реализован с использованием непрерывного волоконного иттербиевого лазера с максимальной мощностью 2 кВт.
Полный текст

Об авторах
Данила Владимирович Журба
Университет ИТМО; ООО «НПП ВОЛО»
Автор, ответственный за переписку.
Email: photonics@technosphera.ru
ORCID iD: 0009-0001-6814-1737
аспирант, младший научный сотрудник
Россия, Санкт-Петербург; Санкт-ПетербургВладимир Михайлович Журба
ООО «НПП ВОЛО»
Email: photonics@technosphera.ru
генеральный директор
Россия, Санкт-ПетербургВадим Павлович Вейко
Университет ИТМО
Email: photonics@technosphera.ru
доктор техн. наук, профессор, главный научный
сотрудник
Александр Эдуардович Пуйша
ООО «НПП ВОЛО»
Email: photonics@technosphera.ru
канд. техн. наук, начальник научно-технического
отдела
Список литературы
- Sun, Bin & Cheng, Lei & Du, Chong-Yang & Zhang, Jing-Ke & He, Yong-Quan & Cao, Guang-Ming. Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip. Coatings. 2021; 11: 517. doi: 10.3390/coatings11050517.
- Evans Yulik Richardson. Corrosion and oxidation of metals [Text]: (Theory. the basics and their practice. appendix) / Translated from English. Edited by Dr. I. L. Rosenfeld, Doctor of Chemical Sciences. – Moscow: Mashgiz, 1962. 856 p.
- K. A. Chandler, J. K. Hudson, J. R. Stepners, et al. Corrosion. Guide. Edited by L. L. Schraer, translated by V. S. Sinyavsky – M.: Metallurgy, 1981. 632 p.
- Evans Yulik Richardson.Corrosion. Passivity and protection of metals [Text] / Translated from English. edited by Prof.-Dr. G. V. Akimov. – Moscow; Leningrad: Metallurgizdat, 1941 (Leningrad). – 888 p.
- Wang, Xiaochen & Ai, Rui & Yang, Quan & Wang, Shang & Zhang, Yanjie & Meng, Yingying & Ma, Xianghong. Effect of oxide scale structure on shot-blasting of hot-rolled strip steel. PeerJ Materials Science. 2. e9. 2020. doi: 10.7717/peerj-matsci.9.
- Li X. & Huang T. & Chong A. W. & Zhou, R. & Choo, Y.s & Hong, M. Laser cleaning of steel structure surface for paint removal and repaint adhesion. Guangdian Gongcheng. Opto-Electronic Engineering. 2017; 44: 340–344
- Kayahan, Ersin & Candan, Levent & Aras, M. & Gundogdu, Ozcan. Surface Cleaning of Metals Using Low Power Fiber Lasers. Acta Physica Polonica A. 2018;134: 371–373.
- Lu Y., Yang L., Wang Y. Continuous Wave Fiber Laser. Coatings. 2019; 9:488.
- Kravchenko, Ya & Klimentov, Sergey & Derzhavin, S. & Mamonov, D. & Karpov, N. & Mayorov, A. Optimization of laser cleaning conditions using multimode short-pulse radiation. Optical and Quantum Electronics. 2020; 52. doi: 10.1007/s11082-020-02399-1.
- Sun X., Yu Q., Bai X., Jin G., Cai J., Yuan B. Substrate Cleaning Threshold for Various Coated Al Alloys Using a Continuous-Wave Laser. Photonics. 2021;8:395. doi: 10.3390/photonics8090395.
- Veiko V. P., Smirnov V. N., Chirkov A. M., Shakhno E. A. Laser cleaning in mechanical engineering and instrumentation. – St. Petersburg: ITMO Research Institute, 2013. 103 p.
- Veiko V., Samohvalov A., Ageev E. Laser cleaning of engraved rolls coupled with spectroscopic control.Optics and Laser Technologies (JOLT). 2013;54:170–175.
- G. X. Chen, T. J. Kwee, K. P. Tan, Y. S. Choo, M. H. Hong. High-Power Fibre Laser Cleaning for Green Shipbuilding. Journal of Laser Micro / Nanoengineering. 2012; 7: 249–253.
- Deschênes JM., Fraser A. Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. In: Lee J., WagstaffS., Lambotte G., Allanore A., Tesfaye F. (eds) Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham. 2020.
- Veiko V. P.. Shakhno E. A. Physical mechanisms of laser surface cleaning, Izvestiya RAS, ser. phys. 2001; 65(4):584–587.
- Zhuang, Shusen & Kainuma, Shigenobu & Yang, Muye & Haraguchi, Manabu & Asano, Takahiro. Characterizing corrosion properties of carbon steel affected by high-power laser cleaning. Construction and Building Materials. 274. 2021. 122085. doi: 10.1016/j.conbuildmat.2020.122085.
- Graf, Marcel & Kawalla, R. Scale Behaviour and Deformation Properties of Oxide Scale during Hot Rolling of Steel. Key Engineering Materials. 2012;504–506:199–204. doi: 10.4028/ href='www.scientific.net/KEM.504-506.199' target='_blank'>www.scientific.net/KEM.504-506.199.
- Ahmadi, D. Oxide Scales Behaviour During Descaling and Hot Rolling. The University of Sheffield, England, June 2019, p. ii.
- Grudev A. P. Friction and lubricants in metal pressure treatment: Handbook. – M.: Metallurgy, 1982. 310 p.
- Chen, Rex & Yuen, W. Oxidation of Low-Carbon, Low-Silicon Mild Steel at 450–900 °C Under Conditions Relevant to Hot-Strip Processing. Oxidation of Metals. 2002;57: 53–79. doi: 10.1023/A:1013390628475.
- Chen, Rex & Yeun, W. Y. D. Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of Metals. 2003;59:433–468. doi: 10.1023/A:1023685905159.
- Yu, Xianglong & Zhao, Jingwei & Wei, Dong & Zhou, Ji. A Review of Microstructure and Microtexture of Tertiary Oxide Scale in a Hot Strip Mill. Key Engineering Materials. 2016;716:843–855. doi: 10.4028/ href='www.scientific.net/KEM.716.843' target='_blank'>www.scientific.net/KEM.716.843.
- Choi JW, Choi JW. Convective heat transfer coefficient for high pressure water jet. ISIJ International. 2002;42(3): 283–289 doi: 10.2355/isijinternational.42.283.
- Teplyakov Yu. N. The decay of wustite, which is part of the scale. Bulletin of SUSU. Series: Chemistry. 2009. No.23 (156).
- Teplyakov Yu. N. Kinetics of phase formation during the decay of wustite // Bulletin of SUSU. Series: Metallurgy. 2021;1.
- Naipinij, Sun & Sukieum, Sasapan & Namprai, Ravinupha & Nilsonthi, Thanasak. Formation of thermal oxide scale and its adhesion to hot-rolled low carbon steels with different final strip thicknesses. E3S Web of Conferences. 355. 02008. 2022. doi: 10.1051/e3sconf/202235502008.
- CAO, Guang-ming & WU, Teng-zhi & XU, Rong & Zhi-feng, Li & WANG, Fu-xiang & Liu, Zhenyu. Effects of Coiling Temperature and Cooling Condition on Transformation Behavior of Tertiary Oxide Scale. Journal of Iron and Steel Research, International. 2015;22:892–896. doi: 10.1016/S1006-706X(15)30086-8.
- Shizukawa, Yuta & Hayashi, Shigenari & Yoneda, Suzue & Kondo, Yasumitsu & Tanei, Hiroshi & Ukai, Shigeharu. Mechanism of Magnetite Seam Formation and its Role for FeO Scale Transformation. Oxidation of Metals. 2016;86 doi: 10.1007/s11085-016-9638-8.
- A.S. 1819908 USSR, MPC C21D 1/82, B21B 45/04. Method for cleaning rolled metal from scale / Vakula L. A. – No. 4942792, application 1991.04.23; publ. 1993.06.07. – 5 p.
- Patent 2280712 C1 Russian Federation, IPC C23F 13/16. Method for producing cast magnetite / Khorishko B. A.; patent holder Novomoskovskiy Institute of the D. I. Mendeleev Russian Technical Technical University. – No. 2004138773/02, application 2004.12.30; publ. 2006.07.27, Issue No. 21.– 8 p.
- Patent 2812150 C1 Russian Federation, IPC B08B 7/00 (2006.01). Method of laser cleaning of metal surfaces from scale / Zhurba V. M.; patent holder Limited Liability Company “Scientific and Production Enterprise of Fiber-Optic and Laser Equipment” (RU). – No. 2023122472, declared on 08/29/2023; published on 01/23/2024 Byul. No. 3.– 11 p.
- Glazunova N. A., Potapenko Yu. A. The effect of the hydraulic pump installation on the quality of the rolled surface. Casting and metallurgy. 2021. № 2
- Temlyantsev N. V. Development of theory and practice of low-oxidizing and low-carbonizing steel heating technologies. Bulletin of the Siberian State Industrial University. 2019; 3 (29): 21–24.
- Patent 2619692 C1 Russian Federation, IPC B08B 7/00 (2006.01). Method of laser purification of metals / M. V. Volkov; patent holder Limited Liability Company “Scientific and Production Enterprise of Fiber-Optic and Laser Equipment” (RU). – No. 2016120022, announced on 05/24/2016; published on 05/17/2017 Issue No. 14.– 6 p.
- Optical constants of Fe3O4 (Iron(II, III) oxide, Magnetite) Querry 1985: n, k 0.21–55.6 µm [Electronic resource]. – Access mode: https://refractiveindex.info/?shelf=main&book=Fe3O4&page=Querry (date of access: 10/29/2022).
- Physical properties of rocks and minerals (petrophysics). Geophysics Reference Book/Edited by N. B. Dortman, – 2nd ed., reprint. and additional – M.: Nedra, 1984–455 p.
- Veiko V. P., Petrov A. A., Samokhvalov A. A. Introduction to laser technologies. – St. Petersburg: ITMO Research Institute, 2018.169 p.
Дополнительные файлы
