Preparation and properties study of IGZO thin films obtained by PECVD method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this paper, the plasma-enhanced chemical vapor deposition (PECVD) method was used for the first time to obtain InGaZnO (IGZO) thin films with various stoichiometry, morphology, and phase composition. The films were synthesized using the setup described in detail in [1–5]. The precursors were elementary high-purity In, Ga, and Zn, the carrier gases were Ar and H2, and a mixture of (Ar-H2-O2) was used as a plasma-forming gas. Deposition was performed on the high-pure quartz glass substrates. The composition of the samples was determined by the energy-dispersive X-ray analysis. The obtained samples were also examined by the scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical profilometry methods. The electrical properties of the obtained films, such as the type, mobility, and carrier concentration, were established by the Hall effect measurements.

Full Text

Restricted Access

About the authors

L. А. Mochalov

N. I. Lobachevsky Nizhny Novgorod State University

Author for correspondence.
Email: mochalovleo@gmail.com
ORCID iD: 0000-0002-7842-8563

Dr of Sciences (Tech.), Associate Professor, Head of Laboratory of High-Purity Materials Technology Research Institute of Chemistry

Russian Federation, Nizhny Novgorod

S. V. Telegin

N. I. Lobachevsky Nizhny Novgorod State University

Email: telegin@chem.unn.ru
ORCID iD: 0000-0002-4960-3502

Cand. of Sciences (Chem.), Associate Professor, Senior Researcher, Laboratory of High-Purity Materials Technology, Research Institute of Chemistry

Russian Federation, Nizhny Novgorod

Е. А. Slapovskaya

N. I. Lobachevsky Nizhny Novgorod State University

Email: slapovskaya@unn.ru
ORCID iD: 0009-0008-0670-2253

Engineer, Laboratory of High-Purity Materials Technology, Research Institute of Chemistry

Russian Federation, Nizhny Novgorod

References

  1. Mochalov L. A., Churbanov M. F., Velmuzhov A. P., Lobanov A. S., Kornev R. A., Sennikov. G. P. Preparation of glasses in the Ge-S-I system by plasma-enhanced chemical vapor deposition. Optical Materials. 2015; 46, 310–313. doi: 10.1016/j.optmat.2015.04.037.
  2. Mochalov L., Logunov A., Markin A., Kitnis A., Vorotyntsev V. Characteristics of the Te-based chalcogenide films dependently on the parameters of the PECVD process. Optical and Quantum Electronics. 2020; 52: 1–12.
  3. Mochalov L. A., Lobanov A. S., Nezhdanov A. V., Kostrov A. V., Vorotyntsev V. M. Preparation of Ge-S-I and Ge-Sb-S-I glasses by plasma-enhanced chemical vapor deposition. Journal of Non-Crystalline Solids. 2015; 423, 76–80. doi: 10.1016/j.jnoncrysol.2015.04.036.
  4. Polyakov A., Pearton S. J., Mochalov L., Logunov A., Kudryashov M., Prokhorov I., Sazanova T., Yunin P., Pryakhina V., Vorotuntsev I., Malyshev V. Heteroepitaxial Growth of Ga2O3 Thin Films of Various Phase Composition by Oxidation of Ga in Hydrogen-Oxygen Plasmas. APSJP ECS Journal of Solid State Science and Technology. 2021; 10 (7): 073002.
  5. Mochalov L., Dorosz D., Kochanowicz M., Logunov A., Letnianchik A., Starostin N., Zelentsov S., Boreman G., Vorotyntsev V. Optical emission spectroscopy of lead sulfide films plasma deposition. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020; 241: 118629.
  6. Murat A, Adler A. U., Mason T. O., Medvedeva J. E. Carrier generation in multicomponent wide-bandgap oxides: InGaZnO4. J Am Chem Soc. 2013 Apr. 17;135(15):5685–92. doi: 10.1021/ja311955g.
  7. Lee Chul Hee, Kim Tae Hyung, Lee Seung Min, Bae Jeong Wun, Kim Kyong Nam, Yeom Geun Young. Properties of IGZO Film Deposited by Ar/O2 Inductively Coupled Plasma Assisted DC Magnetron Sputtering. Science of Advanced Materials. 2017; 7(9): 118–1192. doi: 10.1166/sam.2017.2886.
  8. Kosuke Takenaka et al. Analysis of oxygen-based species introduced during plasma assisted reactive processing of a-IGZO films. Jpn. J. Appl. Phys. 2023;62: SL1018. doi: 10.35848/1347-4065/acdb7e.
  9. Amusan A., Etor D. Electrical Characterization of InGaZnO-Based Thin Film Transistor Fabricated by Three-Mask Process. Journal of Engineering and Technology (FUOYEJET). 2023;8(3), 294–299. doi: 10.46792/fuoyejet.v8i3.1038.
  10. K. C. Sanal, M. Majeesh, M. K. Jayaraj. Growth of IGZO thin films and fabrication of transparent thin film transistor by RF magnetron sputtering. Proc. SPIE 8818. Nanostructured Thin Films VI. 19 September 2013; 881814. doi: 10.1117/12.2023865.
  11. Y. Li, Y. Zhou, C. Guo, S. Zou, L. Lan, Z. Gong. Noble-Metal-Free, Polarity-Switchable IGZO Schottky Barrier Diodes. IEEE Transactions on Electron Devices. June 2023; 70(6): 3057–3063. doi: 10.1109/TED.2023.3267755.
  12. Gunju Kim, Yunyoung Noh, Minkyoung Choi, Kwangbae Kim. Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell. J. Korean Ceram. Soc. 2016;53 (1): 110–115. Publication Date (Web): 2016 January 31 (Paper). doi: 10.4191/kcers.2016.53.1.110.
  13. Wonjun Shin, Daehee Kwon, Minjeong Ryu, Joowon Kwon, Seongbin Hong, Yujeong Jeong, Gyuweon Jung, Jinwoo Park, Donghee Kim, Jong-Ho Lee. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio. Sensors and Actuators B: Chemical. 2021;344:130148. doi: 10.1016/j.snb.2021.130148.
  14. Z. Bizak, M. C. Faleiros, M. T. Vijjapu, U. Yaqoob, K. N. Salama. Highly Sensitive Wireless NO2 Gas Sensing System. IEEE Sensors Journal, July15, 2023; 23(14): 1566–15674. doi: 10.1109/JSEN.2023.3281270.
  15. Rawat Jaisutti, Jaeyoung Kim, Sung Kyu Park, Yong-Hoon Kim. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors. ACS Applied Materials & Interfaces. 2016; 8 (31): 20192–20199. doi: 10.1021/acsami.6b05724.
  16. Fangzhou Li, You Meng, Ruoting Dong, SenPo Yip, Changyong Lan, Xiaolin Kang, Fengyun Wang, Kwok Sum Chan, and Johnny C. Ho. High-Performance Transparent Ultraviolet Photodetectors Based on InGaZnO Superlattice Nanowire Arrays. ACS Nano. 2019; 13 (10): 12042–12051. doi: 10.1021/acsnano.9b06311.
  17. Kishore R., Vishwakarma K., Datta A. Spectral Response of Solar Blind M-S-M Photodetector With InGaZnO Film Sputter Deposited in Diluted Oxygen Ambience. IEEE Journal of Quantum Electronics. Aug. 2023;59(4):1–7. Art no. 4000107. doi: 10.1109/JQE.2023.3278263.
  18. W.-C. Huang, Z.-C. Tseng, W.-J. Hsueh, S.-Y. Liao and C.-Y. Huang. X-Ray Detectors Based on Amorphous InGaZnO Thin Films. IEEE Transactions on Electron Devices. July 2023;70(7): 3690–3694. doi: 10.1109/TED.2023.3279054.
  19. M. Pereira, J. Deuermeier, R. Nogueira, P. A. Carvalho, R. Martins, E. Fortunato, A. Kiazadeh. Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications. Adv. Electron. Mater. 2020; 6: 2000242. doi: 10.1002/aelm.202000242
  20. Martins RA, Carlos E, Deuermeier J, Pereira ME, Martins R, Fortunato E, Kiazadeh A. Emergent solution based IGZO memristor towards neuromorphic applications. J. Mater Chem C Mater. 2022 Jan 10;10(6):1991–1998. doi: 10.1039/d1tc05465a.
  21. Tongzheng Li, Tongying Xu, Zhengyang Yao, Yanan Ding, Guoxia Liu, Fukai Shan. Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson’s disease. Appl. Phys. Lett. 5 June 2023; 122 (24): 243701. doi: 10.1063/5.0151300
  22. Bahubalindruni P. G. et al. Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs For Flexible X-Ray Detector. IEEE Journal of the Electron Devices Society. 2020;8:157–162. doi: 10.1109/JEDS.2020.2971277.
  23. Troughton J. G., Downs P., Price R., Atkinson D. Densification of a-IGZO with low-temperature annealing for flexible electronics applications. Appl. Phys. Lett. 2 January 2017; 110 (1): 011903. doi: 10.1063/1.4973629.
  24. Samarin A. Sharp’s new IGZO display technology. Components and technologies. 2013; 8: 17–22. Самарин А. Новая дисплейная технология IGZO компании Sharp. Компоненты и технологии. 2013;8: 17–22.
  25. S. Huang, J. Jin, J. Kim, W. Wu, A. Song and J. Zhang. IGZO Source-Gated Transistor for AMOLED Pixel Circuit. IEEE Transactions on Electron Devices. July 2023;70(7): 3637–3642. doi: 10.1109/TED.2023.3274501.
  26. Wonjun Shin, Daehee Kwon, Minjeong Ryu, Joowon Kwon, Seongbin Hong, Yujeong Jeong, Gyuweon Jung, Jinwoo Park, Donghee Kim, Jong-Ho Lee. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio. Sensors and Actuators B: Chemical. 2021; 344: 130148. doi: 10.1016/j.snb.2021.130148.
  27. Schellander Y., Winter M., Schamber M., Munkes F., Schalberger P., Kuebler H. et al. Ultraviolet photodetectors and readout based on a-IGZO semiconductor technology. J. Soc Inf Display. 2023; 31(5): 363–372. doi: 10.1002/jsid.1202
  28. Y. Li, Y. Zhou, C. Guo, S. Zou, L. Lan, Z. Gong. Noble-Metal-Free, Polarity-Switchable IGZO Schottky Barrier Diodes. IEEE Transactions on Electron Devices. June 2023;70(6): 3057–3063. doi: 10.1109/TED.2023.3267755.
  29. Katie Stallings, Jeremy Smith, Yao Chen, Li Zeng, Binghao Wang, Gabriele Di Carlo, Michael J. Bedzyk, Antonio Facchetti, Tobin J. Marks. ACS Applied Materials & Interfaces. 2021; 13 (13): 15399–15408. doi: 10.1021/acsami.1c00249
  30. Tongzheng Li, Tongying Xu, Zhengyang Yao, Yanan Ding, Guoxia Liu, Fukai Shan. Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson’s disease. Appl. Phys. Lett. 5 June 2023; 122 (24): 243701. https://doi.org/10.1063/5.0151300.
  31. Zhou H. T., Li L., Chen H. Y., Guo Z., Jiao S. J., Sun W. J. Realization of a fast-response flexible ultraviolet photodetector employing a metal-semiconductor-metal structure InGaZnO photodiode. RSC Advances. 2015;10:1039/c5ra17475a.
  32. Jiang D. L., Li L., Chen H. Y., Gao H., Qiao Q., Xu Z. K., Jiao S. J. Realization of unbiased photoresponse in amorphous InGaZnO ultraviolet detector via a hole-trapping process. Appl. Phys. Lett. 27 April 2015; 106 (17): 171103. https://doi.org/10.1063/1.4918991.
  33. Mochalov L. A., Kudryashov M. A., Prokhorov I. O., Vshivtsev M. A., Kudryashova Yu. P., Slapovskaya E. A., Knyazev A. V. Investigation of the Plasma-Chemical Synthesis of Thin Ga2O3 Films Doped with Zn in One Step in Plasma. High Energy Chemistry. 2023;57(6): 509–514.
  34. Kamiya T., Nomura K., & Hosono H. Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping*. Journal of Display Technology. 2009; 5(12), 468–483. doi: 10.1109/jdt.2009.2034559.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plasma-chemical reactor during emission diagnostics of the plasma-chemical IGZO synthesis process

Download (141KB)
3. Fig. 2. Samples of IGZO films

Download (85KB)
4. Fig. 3. Map of element allocation on the surface, typical for the obtained IGZO samples

Download (953KB)
5. Fig. 4. Surface of IGZO samples with the approximate ratio of elements: a) 2:1:2; b) 1:1:1; c) 2:1:1

Download (448KB)
6. Fig. 5. Surface topography of the IGZO samples obtained by the semi-contact AFM with an approximate ratio of elements: a) 2:1:2; b) 1:1:1; c) 2:1:1

Download (872KB)
7. Fig. 6. Diffraction patterns of the IGZO samples with the approximate element ratios of 2:1:2, 1:1:1 and 2:1:1 Intensity, relative units

Download (177KB)
8. Fig. 7. Dependence of the concentration and mobility of carriers on the ratio of macro-components in IGZO samples

Download (223KB)
9. Fig. 8. Optical transmission spectra of the IGZO samples with the approximate element ratios of 2:1:2, 1:1:1 and 2:1:1 (top) and determination of the band-gap energy by the Tauc method (bottom)

Download (312KB)

Copyright (c) 2025 Mochalov L.А., Telegin S.V., Slapovskaya Е.А.