Crystal Scintillator with a Sensitized Circuit for Converting Ionizing Radiation into the Visible Spectral Band

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The inorganic compounds based on crystalline solid solutions are proposed as the materials for visually observable transformation of ionizing radiation. The energy spectra of Ca1-xLuxF2+x: Eu2+ crystals have showed that the light output is consistently increased upon an increase in the parameter Zeffect related to the advanced LuF3 content. The efficient excitation energy transfer between the impurity rare-earth ions Eu2+ and Pr3+ in the mixed crystals of Ca1-xLuxF2+x synthesized by the horizontal directional crystallization has been studied. The results of luminescence studies during registration of the γ-, X-ray and short-wave UVC radiation confirm the process of excitation energy transfer from the Eu2+ ions to Pr3+ in Ca1-xLuxF2+x and allow to consider the Eu2+ ions as an efficient sensitizer of Pr3+ ions. The sensitization-enhanced radiation of Pr3+ ions converts the UV radiation of Eu2+ excited by the γ-quanta into the visible spectral band.

Full Text

Restricted Access

About the authors

Stepan E. Sarkisov

Kurchatov Institute

Author for correspondence.
Email: dr.stevesarkisov@gmail.com

Cand. of Sc. (Phys. & Math.), Deputy Head of Department

Russian Federation, Moscow

Valentin A. Yusim

Kurchatov Institute; Prokhorov General Physics Institute of the Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: ValentinYusim@mail.ru
ORCID iD: 0000-0003-4536-058X

Cand. of Sc. (Eng.), Leading Researcher; Leading Researcher at the Laboratory of Photonics and Organic Electronics; Associate Professor

Russian Federation, Moscow; Moscow; Dolgoprudny

Denis N. Chausov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: d.chausov@yandex.ru
ORCID iD: 0000-0002-1287-6427

Dr. of Sc. (Phys. & Math.), Associate Professor, Head of
the Laboratory of Photonics and Organic Electronics

Russian Federation, Moscow

References

  1. Getkin А., Belsky А., Vasil’ev А. Scintillation Efficiency Improvement by Mixed Crystals Use. Transaction on Nuclear Science. 2013; 61(1): 262–270. doi: 10.1109/TNS.2013.2277883.
  2. Sakhtong O., Chewpradiktul W., Wanarak Ch., [et.al]. Luminescence and Scintillation Charakteristics of Gd3Al2Ga3O12: Ce3+ scintillators. Opt.Mater. 2013; 36(2): 568–571. doi: 10.1016/j.optmat.2013.10.033.
  3. Sorokin N., Sobolev B. Intrinsic fluorine-ion conductivity of crystalline matrices of fluoride superionics: BaF2 (fluorite type) and LaF3 (tysonite type). Solid State Physics. 2019; 61(1): 53–58. doi: 10.21883/FTT.2018.12.47346.1814.
  4. Sobolev B. The Rare Earth Trifluorides. Part 1. The High Temperature Chemistry of the Rare Earth Trifluorides. – Institut d’Estudis Catalans. 2000; 520. ISBN: 84-7283-518-9.
  5. Sarkisov S., Yusim V., Pisarevsky Yu. Influence of γ Irradiation on the Optical and Energy Spectra of Fluoride Single– and Multicomponent Crystal Systems Activated by Cе3+ Ions. Crystallography Reports. 2024; 69: 1131–1137. doi: 10.1134/S1063774524601862.
  6. Sarkisov S., Yusim V., Pisarevsky Yu. Study of formation of radiation-stimulated impurity defects in CaF2 crystals activated by trivalent rare earth ions. Crystallography. 2023; 68(1): 68–76 doi: 10.31857/S0023476123010241.
  7. C.-G. Ma, M. G. Brik, B. Liu, [et al]. Energy level schemes of fN electronic configurations for the di-, tri, and tetravalent lanthanides and actinides in a free state. Journal of Luminescence. 2016; 170: 369–374. doi: 10.1016/j.jlumin.2015.07.053.
  8. Alimov O. K., Doroshenko M. E., Konyushkin V. A., et al. Selective laser spectroscopy of SrF2 crystal doped with Pr3+ ions. Quantum Electronics. 2016; 46(1): 68–72. doi: 10.1070/QE2016v046n01ABEH0159029.
  9. Danilkin, M.I., Belousov, A.P., Klimonskii, S.O. [et al.] Formation of Eu2+ and Eu3+ centers in synthesis of CaF2:Eu luminophores. J. Appl Spectrosc. 2007; 74: 858–865. doi: 10.1007/s10812-007-0133-5
  10. Fedorov P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russian Journal of Inorganic Chemistry. 2000; 45: 268–291. doi: 10.1070/QE2016v046n01ABEH015902
  11. Aminov. L. K. Study of Rare-Earth Ion Clusters in Mixed Fluorite-Based Crystals by EPR Method. Optics and Spectroscopy. 2014; 116(5): 840–844.
  12. L. Van Pieterson, R. T. Wegh, A.Meijerink, M. F. Reid. Emission Spectra and Trends for 4fn-15d←→4fn Transitions of Lanthanide Ions: Experiment and Theory. J.Chem.Phys. 2001; 115(20): 9382–9392. doi: 10.1063/1.1414318.
  13. GOST 17038.2-79 Scintillation ionizing radiation detectors. Method for measuring the detector’s light output by the peak of total absorption or the edge of the Compton distribution. approved and put into effect on 01.01.1980. Description update date – 01.07.2023.
  14. Dorenbos P. Fundamental Limitations in the Performance of Ce3+–, Pr3+–, and Eu2+– Activated Scintillators. IEEE Transactions on Nuclear Science. 2010; 57(3): 1162–1167. doi: 10.1109/TNS.2009.2031140.
  15. L. Van Pieterson, M. F. Reid, G. W. Burdick, A. Meijerink. 4fn → 4fn-15d transitions of the heavy lanthanides: Experiment and theory. Physical Review B. 2002; 65(4): 045114 doi: 10.1103/PhysRevB.65.045114.
  16. G. H. Dieke, H. M. Crosswhite. The spectra of the doubly and triply ionized rare earths. Applied Optics. 1963; 2(7): 675–686. doi: 10.1364/ao.2.000675.
  17. Myasnikova A., Mysovsky A., Radzhabov E. First Principle Calculation of Absorption Spectra of and Ions in Alkaline Earth Fluorides. IEEE Transactions on Nuclear Science. 2012; 59(5): 2065–2068. doi: 10.1109/TNS.2012.2187931.
  18. Kolesnikov I., Tolstikova D., Manshina A., Mikhailov M. Eu3+ concentration effects on luminescence properties of YAG : Eu3+ nanoparticals. Opt.Mater. 2014; 37. 306–310. doi: 10.1016/j.optmat.2014.06.015.
  19. Zhang Q. Y., Huang X. Y. Recent progress in quantum cutting phosphors. Progress in Materials Science. 2010; 55(5): 353–427. doi: 10.1016/j.pmatsci.2009.10.001.
  20. Tzenga H., Chengb B., Chena T. Visible quantum cutting in green–emitting BaGdF5 : Tb3+phosphors via down conversion. J.Lumin. 2007; 122–123: 917–920. doi: 10.1016/j.jlumin.2006.01.326.
  21. Wang D., Kodama N. Visible Quantum cutting through down conversion in GdPO4 : Tb3+ and Sr3Gd(PO4)3 : Tb3+. J.Solid State Chem. 2009; 182(8): 2219–2224. doi: 10.1016/j.jlumin.2006.01.326.
  22. Jaiswal S., Sawala N., Nagpure P., Bhatkar V., Omanwar S. Visible quantum cutting in Tb3+–doped BaGdF5 phosphor for plasma display panel. J. Mater. Sci: Mater. Electron. 2017; 28(3): 2407–2414. doi: 10.1007/s10854-016-5811-8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Luminescence of the samples of double fluoride crystals CaF2 – LuF3 doped with the Eu2+ and Pr3+ ions under the influence of X-ray radiation (March-200)

Download (168KB)
3. Fig. 2. Amplitude spectra of pulses of the 137Cs source (662 keV), measured by the scintillators: Ca0.948Lu0.05Eu0.002F2.053 (1), Ca0.898Lu0.1Eu0.002F2.103 (2) and a reference one NaI(Tl) (3)

Download (107KB)
4. Fig. 3. Spectral distribution by the wavelengths of absorption and luminescence bands of impurity ions in the Ca0.95Lu0.05F2.05 crystal

Download (78KB)
5. Fig. 4. Multiphonic nonradiative relaxation: a) diagram of excitation energy transfer from the Eu2+ ion to the Pr3+ ion in the Ca1–xLuxF2+x crystal; b) quenching mechanism diagram in the paired centers Pr3+(I) – Pr3+(II) (the thin arrows on the diagrams of the R3+ ion levels indicate the intermultiplet absorption and luminescence transitions; the wavy arrows indicate the nonradiative transitions; the bold arrows indicate scintillation transition; ET – excitation energy transfer Eu → Pr)

Download (116KB)
6. Fig. 5. Fragment of the survey luminescence spectrum of the Ca0.898Lu0.1Eu0.002F2 crystal: 0.3 mol. % Pr3+ (solid line) and 1.0 mol. % Pr3+ (dashed line) at 300 K and λexc. = 300 nm

Download (96KB)
7. Fig. 6. Dependence of the luminescence spectrum intensity of CaF2 : 0.3 mol. % Eu2+ at various concentrations of the Pr3+ ions

Download (89KB)
8. Fig. 7. Sensitization mechanism effect: a) enhancement of the Pr3+ ionic emission at the 3Р0 → 3H6,3F2 transitions in the Eu2+-doped crystal Ca0.938Lu0.05Eu0.002Pr0.01F2.062 as a result of efficient excitation energy transfer from the Eu2+ to Pr3+ ions; b) luminescence spectra of the concentration series of the Pr3+ ions at the3Р0 → 3H6,3F2 transitions in the Ca0.948Lu0.05Eu0.002F2 crystal at 300K: 1 mol. % Pr3+ (1); 2 mol. % Pr3+ (2); 3 mol. % Pr3+ (3)

Download (140KB)

Copyright (c) 2025 Sarkisov S.E., Yusim V.A., Chausov D.N.