Vol 21, No 2 (2020)

Section 1. Computer Science, Computer Engineering and Management

The development and investigation of the efficiency of the differential evolution algorithm for solving multi-objective optimization problems

Erokhin D.A., Akhmedova S.A.

Abstract

In practice problems, which consist in the search of the best (optimal) solution according to the different irredundant and contradictory (conflicting) criteria, called multi-objective problems, are of frequent occurrence. One of the most commonly used methods for solving this kind of problems consists in combination of all criteria into the single one by using some linear relation. However, despite the simplicity of this method, solving problems with its help may cause other problems related to the determination of the mentioned linear combination, namely related to the determination of the weight coefficients for each criterion. The incorrect selection of these coefficients may lead to non-optimal solutions (according to the Pareto theory). In this regard, recently various population-based algorithms have been proposed for solving the described problems, which are the modifications of these population-based algorithms for solving single-objective optimization problems. This article describes the developed modifications of the Differential Evolution algorithm (DE) for solving multi-objective unconstrained optimization problems based on the well-known NSGA (Non-dominated Sorting Genetic Algorithm) and MOEA/D (Multiobjective Evolutionary Algorithm Based on Decomposition) schemes, which use the Pareto theory. The investigation into the efficiency of the Differential Evolution algorithm for solving multi-objective optimization problems in relation to the chosen mutation operator of the original DE algorithm and to the multi-objective scheme was conducted. The developed modifications were tested by using some well-known multi-objective real-valued optimization problems with 30 variables, such as ZDT1, ZDT2, ZDT3, etc. The practical problem of spacecraft control contour variant choice was solved as well. The experimental results show that better results were achieved by the Differential Evolution algorithm with the simplest mutation operators combined with the NSGA scheme. Thus, the applicability of the described modification for solving practical multi-objective optimization problems was demonstrated.

Siberian Aerospace Journal. 2020;21(2):134-143
pages 134-143 views

To the task of controlling a group of objects on the basis of information technologies

Zhalnin D.A.

Abstract

To participate the TPP with cross-section communications in the general primary frequency control, it is necessary to have a working main regulator. The main regulator is designed to maintain the steam pressure in the major steam line of the TPP at a given level, which is a difficult task. At the TPP with cross-connections, the steam produced by the boilers enters the major steam line. To maintain the pressure in the major steam line, it is necessary to control the heat load of the working boilers. Traditional solutions to construct the main regulator found no use, as have a number of disadvantages, not allowing exploiting a system of automatic control. Looking at the steam pressure control system in the major steam line from the bottom to up, it is possible to identify disadvantages that prevent the effective operation of the main regulator at each level. At the lower level of the main regulator, there are controllers of heat load of boilers, built according to the scheme task-heat. Heat load controllers are designed to maintain heat release in the boiler furnace at the required level. The heat signal is the sum of the signals for the steam flow of the boiler and the rate of change in the steam pressure in the boiler drum. Such a structure does not allow maintaining the invariance of the heat signal under external disturbances effectively, as sharp changes of the steam pressure in the major steam line lead to a "false" operation of the controllers. At the upper level there is the main regulator itself, which maintains the steam pressure in the major steam line at a given level and corrects the tasks to the controllers of the heat load of the boilers. The simultaneous identical effect on the heat load of the boilers cannot be optimal from the point of view of the criteria for assessing the quality of regulation, since the dynamic properties of the boilers, such as the gain, the transition time constant and the transport delay are individual for each boiler.

However, in 2006–2008, the attempt to build an updated main regulator that takes into account the shortcomings of the traditional scheme was made. The basis of the structure of the main regulator is still parametric and, as a result of ten-years’ experience, shortcomings in the operation of the updated main regulator were identified. The shortcomings, in most cases, consist in need of frequent corrections of adjusting coefficients of system because of the change of dynamic properties of an object during the operation. In fact, the same problems related to the parametric structure of the regulator remain.

Up-to-date information technologies made it possible to introduce adaptive process control systems that allow to count an extended number of signals entering the system and to form control actions, based on both current and historical data of the technological process. The use of the latest information technologies and modern hardware in the control of complex multi-connected units that solve not only the problems of process control, but also the problem of improving the economic and environmental performance of enterprises, should become a new step in the development of automatic control systems.

Siberian Aerospace Journal. 2020;21(2):144-152
pages 144-152 views

Applied classification problems using ridge regression

Kononova N.V., Mangalova E.S., Stroev A.V., Cherdantsev D.V., Chubarova O.V.

Abstract

The rapid development of technical devices and technology allows monitoring the properties of different physical nature objects with very small discreteness of the data. As a result, one can accumulate large amounts of data that can be used with advantage to manage an object, a multiply connected system, and a technological enterprise. However, regardless of the field of activity, the tasks associated with small amounts of data remains. In this case the dynamics of data accumulation depends on the objective limitations of the external world and the environment. The conducted research concerns high-dimensional data with small sample sizes. In this connection, the task of selecting informative features arises, which will allow both to improve the quality of problem solving by eliminating “junk” features, and to increase the speed of decision making, since algorithms are usually dependent on the dimension of the feature space, and simplify the data collection procedure (do not collect uninformative data). As the number of features can be large, it is impossible to use a complete search of all features spaces. Instead of it, for the selection of informative features, we propose a two-step random search algorithm based on the genetic algorithm uses: at the first stage, the search with limiting the number of features in the subset to reduce the feature space by eliminating “junk” features, at the second stage - without limitation, but on a reduced set features. The original problem formulation is the task of supervised classification when the object class is determined by an expert. The object attributes values vary depending on its state, which makes it belong to one or another class, that is, statistics has an offset in class. Without breaking the generality, for carrying out simulation modeling, a two-alternative formulation of the supervised classification task was used. Data from the field of medical diagnostics of the disease severity were used to generate training samples.

Siberian Aerospace Journal. 2020;21(2):153-159
pages 153-159 views

Nonparametric identification of dynamic systems under normal operation

Kornet M.E., Shishkina A.V.

Abstract

The research gives nonparametric identification algorithms under the conditions of incomplete a priory information. The identification case differs from the previously known ones due to the fact that, besides the control action, an uncontrollable variable, but a measurable one, impacts on the object input. In contrast to parametric identification, the research considers the situation when the equations describing dynamic objects are not given with accuracy to the parameters. In this case, there are some features to study while getting the recovery characteristics of various object channels. The main characteristic is that the transition response of a channel is taken when the other channel is in a stable position. Moreover, the identification problem is analyzed under normal object operation, opposite to the previously known nonparametric approach based on Heaviside function input to the object and further Duhamel integral application. An arbitrary signal is input to the object during normal operation as a result we have a corresponding response of the object output. It should be noted that the measurements of the input and output variables are carried out with random noise. As a result, we have a sample of input-output variables. As linear dynamical system can be described by the Duhamel integral, with known input and output object variables, corresponding values of the weight function can be found. This is achieved by discrete representation of the latter. Having such realization, nonparametric estimate of the weight function in the form of the nonparametric Nadaraya-Watson estimate is used later. Substituting this with the Duhamel integral, we obtain a nonparametric model of a linear dynamical system of unknown order.

The article also describes the case of constructing nonparametric model when a delta-shaped function is input to the object. It is interesting to find out how delta-shaped function might differ from the delta function. The weight function is determined in the class of nonparametric Nadaraya-Watson estimates. Previously proposed nonparametric algorithms consider the case when Heaviside function is applied to the object; this narrows the scope of nonparametric identification practical use. It is important to construct nonparametric model of the dynamic object under conditions of normal operation.

Siberian Aerospace Journal. 2020;21(2):160-165
pages 160-165 views

Multi-grid finite elements in calculations of multilayer oval cylindrical shells

Pustovoi N.V., Grishanov A.N., Matveev A.D.

Abstract

The method of finite elements (FEM) is actively used in calculations of composite shell constructions (rotation shells, circle and oval cylindrical shells), which are widely used in space-rocket and aviation equipment. To calculate multi-layer oval cylindrical shells three-dimensional curvilinear Lagrange multi-grid finite elements (MGFE) are suggested. When building a k-grid finite element (FE), k nested grids are used. The fine grid is generated by the basic split of MGFE that takes into account its complex heterogeneous structure and shape. On k-1 large grids the move functions used for decreasing MGFE dimension are determined. The stress-strain state in MGFE is described by the elasticity theory three-dimensional task equations (without introduction of additional hypotheses) in local Cartesian coordinates systems. The procedure of building shell-type Lagrange MGFE with the use of Lagrange polynomials presented in curvilinear coordinate systems is demonstrated. With the size reduction of discrete models MGFE have constant thickness equal to the thickness of the shell. The Lagrange polynomials nodes coincide in thickness with the MGFE large grid nodes and are located on the shared borders of different module layers. The use of such MGFE generates approximate solutions sequences that uniformly and quickly converge to precise solutions.

The main advantages of MGFE are as follows: they form discrete models with the dimension 102–106 times smaller than the basic models dimension and they generate small error solutions. Examples of calculations are given for four- and three-layer oval shells of various thickness and shape under both uniform and local loading with the use of 3-grid FE. Comparative analysis of the obtained solutions with the solutions built with the help of the software package ANSYS shows high efficiency of the suggested MGFE in calculations of multi-grid oval shells.

Siberian Aerospace Journal. 2020;21(2):174-182
pages 174-182 views

Applying software-mathematical models of onboard equipment to develop onboard software

Lomaev Y.S., Ivanov I.A., Tolstykh A.V., Islentev E.V.

Abstract

This paper deals with the testing of the functioning logic of spacecraft subsystems at the stage of developing system onboard software. The increasing complexity of the structure and operation logic of spacecraft due to the increased requirements in terms of providing consumers with information services (navigation, satellite monitoring of transport, geodesy, communications etc.) demands maintaining the reliability of uninterrupted operation, the implementation of automated parrying of emergency situations during the operation of spacecraft onboard equipment. In order to meet these requirements, it is necessary to test the interaction of onboard equipment and onboard integrated computing complex software that implements the target-oriented operation of spacecraft onboard systems. In such a case, meeting the requirements for reliability increase of onboard software should not lead to the increase of the manufacturing period of spacecraft.

In this work we propose the approach for testing information and logical interaction between onboard equipment and software of a spacecraft onboard integrated computing complex with the use of a laboratory testing sample unit and a software-mathematical model. We described the basic concepts of conducting two-stage testing of onboard software, involving autonomous and system testing on the ground testing complex. The proposed approach is applied as part of the onboard software development cycle in accordance with the standards of the JSC “Academician M.F. Reshetnev “Information Satellite Systems”.

The approach proposed in this work helps reduce the number of errors during onboard software development and testing of information and logical interaction between onboard equipment and a spacecraft as a whole in every operation mode.

Siberian Aerospace Journal. 2020;21(2):166-173
pages 166-173 views

Strict avalanche criterion of four-valued func-tions as the quality characteristic of cryptographic algorithms strength

Sokolov A.V., Zhdanov O.N.

Abstract

The S-box is the most important component of modern cryptographic algorithms which largely determines the quality of cryptographic transformation. The modern method of estimating the S-boxes quality employs their representation as component Boolean functions to which cryptographic quality criteria are applied. Such criteria include: nonlinearity, correlation immunity, an error propagation criterion, and a strict avalanche criterion. Nevertheless, it is obvious that a cryptanalyst is not constrained in the ways of representing the cipher components, in particular, using the functions of many-valued logic. The design features of modern cryptographic algorithms allow their representation in the form of 4-logic functions, which determines the need to research cryptographic properties of the S-boxes represented as component 4-functions. In the literature today there are methods for measuring the nonlinearity of 4-functions; nevertheless, there are no similar methods for researching the differential properties of 4-functions, in particular, involving their compliance with the strict avalanche criterion. In this paper the strict avalanche criterion is generalized to the case of 4-functions and the compliance of the S-boxes component 4-functions of the “Magma” cryptoalgorithm to the strict avalanche criterion has been researched. All balanced 4-functions of length N = 16 satisfying the strict avalanche criterion were synthesized using the restricted brute-force method. The basic properties of the constructed class of 4-functions are determined, and bijective S-boxes based on them are constructed. It has been established that S-boxes of length N = 16 satisfying the strict avalanche criterion, both in terms of component Boolean functions and in terms of 4-functions, also possess optimal nonlinear properties. This circumstance allows us to recommend S-boxes satisfying the strict avalanche criterion of component 4-functions for use in modern cryptographic algorithms.

Siberian Aerospace Journal. 2020;21(2):183-190
pages 183-190 views

Library of mathematical functions with parallelism at the operational level in the Pythagor language

Udalova J.V., Kuzmin D.A.

Abstract

At present, developed tools and libraries have been designed for imperative and functional programming languages that provide parallelism through processes or threads. There are other alternative approaches to the organization of parallel computing, one of which is implemented in Pythagor – the language of functional-streaming parallel programming, and involves parallelism at the level of operations.

The tools of the Pythagor programming language are actively developing, and the repository of predefined functions is expanding. Many mathematical functions have been designed to provide a developer with no less functionality than the math library math.h of the C programming language. A large part of the mathematical functions have been implemented using the Maclaurin’s series. It is both used as an approach of faster and less accurate calculations, in which a predetermined number of elements of the series is calculated without cycles and recursions with the substitution of pre-calculated coefficients in the function code, and as an approach of less rapid and more accurate calculations, in which the elements of the series are calculated dynamically until the desired accuracy is achieved.

The development of a library of mathematical functions of a programming language is an applied algorithmic task already implemented in one way or another for a number of existing programming languages. But in many languages, the implementation of algorithms for mathematical functions is hidden from the user, while modern tools of the Pythagor language support an open repository of functions. Additional interest is the possibility of parallelism at the level of operations in the calculation of mathematical formulas in the Pythagor language.

Siberian Aerospace Journal. 2020;21(2):191-196
pages 191-196 views

Section 2. Aviation and Space Technology

Developing the laboratory test bench of fuel three-point measurement

Akzigitov R.A., Pisarev N.S., Statsenko N.I., Glukharev A.R., Tsar'kov I.B.

Abstract

The development of digital technology allows continuous improvements in many areas. This paper reflects the development of a new fuel measurement method. To measure the fuel, the authors propose three fuel sensors and a computational element to simulate the position of the fuel level in space with further calculating the volume of fuel, to reduce errors due to the fuel meters operation. The main advantage of this system is the elimination of errors arising from the evolution of an aircraft, as well as its uneven movement.

The paper demonstrates a phased development of a laboratory test bench to study the three-point method to measure fuel. In the course of the work, a vessel is assembled to simulate the fuel tank of the aircraft. The vessel is a glass container with submersible measuring sensors. Also, the research contains calculation of the bridge electrical circuit to compute a voltage value at each sensor. In the test, transformer fluid substitutes fuel, since it acted as a dielectric. The program code for the microcontroller is recorded.

The proposed method has several advantages in comparison with traditional methods of measuring the fuel level; a mathematical model is presented, on the basis of which the level of fuel in the aircraft fuel tank is measured.

Siberian Aerospace Journal. 2020;21(2):198-203
pages 198-203 views

Inter-satellite optical communication link

Aleksandrov A.V., Vasilenko A.V., Korolev D.O.

Abstract

A two-level system of data transmission in the optical range is considered between a low-orbit spacecraft located in a sun-synchronous orbit and a repeater satellite located in a geostationary orbit. This topic is rather relevant due to the fact that the rapid development of remote sensing satellites resulted in the increase of the amount of transmitted information, which in consequence introduced new requirements for communication systems. The increase of data transmission rate and severization of requirements for communication systems contributed to the development of one of the most promising areas of space communications, based on the information transmission via a laser channel, due to a high energy concentration and a much higher carrier frequency. The prospects for the application of optical communication systems are designated by lower power consumption, dimensional specifications and the mass of the transceiver equipment of the optical range (compared to radiofrequency range systems).

The article describes the solution of application of optical communication link between a low-orbit spacecraft and a repeater satellite. The main factors that contribute to the attenuation in the process of signal propagation along the route are presented and analyzed. A model of a communication channel between a low-orbit spacecraft and a repeater satellite is provided for a visual image. Two different approaches of mutual guidance and tracking of laser terminals are described for using beacons and without ones. EDRS foreign system is considered as an analogue. The estimation of the main parameters of the communication link is given.

The communication system considered in the article will allow for greater carrier capacity of the data transmission in the optical range between the low-orbit spacecraft and repeater satellite. The application of this system will allow solving problems, including in the interests of any departments and structures of the Ministry of Defense of the Russian Federation, for which the rate of obtaining information is one of the basic requirements for a satellite communication system. The tasks of precise targeting of receiving and transmitting devices arising as a result of narrow beam patterns can be solved with current technical means.

Siberian Aerospace Journal. 2020;21(2):204-209
pages 204-209 views

Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations

Zavyalov P.S., Kravchenko M.S., Urzhumov V.V., Kuklin V.A., Mikhalkin V.M.

Abstract

High-precision and reliable inspection of thermal deformations is necessary in terms of simulating the effects of space in the ground-based experimental processing of antennas and mirror systems of spacecrafts. Inspection of objects up to 1.5 m in size is considered in the paper. In practice, it can reach sizes up to 10 m. Requirements for thermal deformation are in range of 10–200 micrometers. The deformable surface is rough (Ra » λoptic). The measurement error, however, should not exceed ± 1 micron.
The electronic speckle pattern interferometry (ESPI) method is the most suitable for solving this problem. The method allows to inspection objects with a randomly inhomogeneous surface. The method assumes that it is necessary to calculate the wave phase values from the recorded picture by the digital matrix. It is the phase that contains information about the deformation, and the spatial phase shift method is used to calculate it.
One of the measuring systems based on this method is the measuring system PulsESPI (Carl Zeiss Optotechnik GmbH production, Germany). It has a high sensitivity which is about 50 nm. However, this measuring system is designed for single measurements. In this regard, an additional software module for processing and visualization the result of a series of several hundred measurements has been developed.
The experimental test bench with a test object has been developed to research the metrological characteristics of the PulsESPI system in accordance with thermal deformations measurements (multiple determinations). The PulsESPI system and the Renishaw XL-80 interferometer introduced into register of measuring instrumentation of Russian Federation were located on different sides of the object 1.5 m in size. As a result of measuring the surface displacement measured by the Renishaw XL-80 interferometer and its corresponding point from the PulsESPI system deformation map are compared. Three types of tests were carried out at the developed bench. The root-mean-square deviation of single measurements was no more than ± 0.2 μm. Error was no more than ± 1 μm when the series of measurements was conducted in which a total strain of 200 μm was obtained. The results obtained suggest the possibility of using this system for high-precision inspection of thermal deformations of large objects.

Siberian Aerospace Journal. 2020;21(2):210-218
pages 210-218 views

The method of the disk friction determining of low mass flow centrifugal pumps

Zuev A.A., Nazarov V.P., Arngold A.A., Petrov I.M.

Abstract

Low mass flow centrifugal pumps are currently widely used in the energy supply system of liquid rocket engines, the engines of correction, docks, consisting of on-Board power sources on-Board sources power supply system of fuel components in the in gas generator systems for inflating fuel tanks, and in temperature control systems of aircraft and spacecraft.

When designing low mass flow centrifugal pumps for aerospace purposes, methods for calculating and optimizing the flow rate are often used corresponding to the design methods of full-size centrifugal pumps, which limits the mode and design potential of pumps and affects their energy characteristics and reliability. Reliability requirements often lead to the need to reserve units and fuel-supply systems.

Despite the large amount of research works, the issues of reliable design of low mass flow centrifugal pumps with high energy and operational parameters for spacecraft and aircraft remains an urgent task.

The article analyses the operational parameters of low mass flow centrifugal pumps used in aircraft and spacecraft power systems. Taking into account working fluid used and the temperature range, it was found that a laminar rotational flow with Reynolds number characteristic Re=103÷3105 is realized in the lateral cavity between the impeller and the pump housing.

The determination of power losses on disk friction of the impeller technique is developed taking into account design features and the applied schemes. Equations for determining the disk friction coefficients are consistent with the dependencies obtained by other authors. The obtained equations for the laminar rotational flow made it possible to determine the dependences for the resistance moment and the disk friction power of the impeller determining of a low mass flow centrifugal pump.

Siberian Aerospace Journal. 2020;21(2):219-227
pages 219-227 views

Development of interface module emulator architecture for spacecraft life support systems

Komarov V.A., Semkin P.V.

Abstract

The article gives an analysis of special characteristics of ground-based experimental evaluation of on-board radio-electronic equipment, taking the control unit of up-to date spacecraft on-board control complex as the test objective. The focus is the problem of providing testing procedures of the specific software employed in design and manufacture process. A solution of the problem is worked out on the basis of performance of a hardware-software complex which emulates interface modules for the computing module of control unit. According to the general operation algorithm of the control unit, the developed complex is regarded as a multi-user system. The main functional requirements for hardware-software emulator, regarded as the corresponding queuing system, are also defined. The results of the experiments with the computer module operation prompted the requirements for the emulator response time from the point of view of its operation stability in real strict-time mode. In order to ensure the required efficiency of operation, the emulated functions of the interface modules are classified according to the severity level of their execution determinacy. The results of experimental evaluation оf the service channel hardware design variants when applying multi-functional reconfigurable input-output digital devices allowed to develop a hardware-software emulator structural circuit based on operation parallelism of programmable integrated logic circuits and flexibility of software reconfiguration. The realization of emulated functions of selected classes within the available architecture was carried out using the corresponding hardware blocks and software module. The presented analysis of the emulator response limits was performed with the application of National Instruments technologies. The results of the developed hardware-software emulator evaluation and practical application, as well as other possible ways of applying the proposed approach for tests of spacecraft on-board radio-electronic equipment and space system components were also analyzed.

Siberian Aerospace Journal. 2020;21(2):228-235
pages 228-235 views

Control and regulation equipment of electric power system for a prospective piloted transport system

Savenkov V.V., Tishchenko A.K., Volokitin V.N.

Abstract

The aim of this work is to consider solving complex of tasks focused on fulfilling the complicated tactical and technical requirements for regulation and monitoring equipment (RME) of electric power supply system (EPS) for a prospective spacecraft. These requirements are imposed due to the need to ensure high reliability of the equipment during operation under the influence of external factors (vacuum, vibro-impact loads, radiation, absence of convective cooling), as well as to achieve high mass-dimensional parameters of the equipment and its high functionality

The complexity of problem solving lies in the need to ensure conflicting requirements – high levels of energy density, weight and size characteristics, reliability and durability.

These problems fully apply to the RME of the EPS for a prospective piloted transport system (PPTS) which design example shows ways of solving abovementioned problems.

The most rational way of solving these contradictions is to increase the specific energy indicators of the main components of the RME devices – power converters, which can be achieved by using modern power electronic elements, using new materials and semi-finished products, for example, printed circuit boards with a metal heat sink, as well as increasing the layout density design.

Determining solution is to select an optimal structure of the power converter, which provides the best efficiency.

An additional way to reduce the mass-dimensional indicators of the RME is the use of a digital control method, the collection of telemetric information, and the receiving and processing of commands.

At the same time, on the contrary, to ensure the specified reliability of the equipment, it is necessary to use excess reservation at the element level – for power components, and the principles of majority reservation at the functional block level – for control and telemetry schemes.

Using the example of RME, developed by CJSC “Orbita”, the main EPS parameters of a new generation spacecraft are shown and most important power supply subsystems are considered in the article: the solar energy control subsystem and the power storage subsystem, ways to build them for meeting specified requirements, taking into account the proposed solutions.

As a result of this work, the optimal structures of power converters – the current regulator of the solar battery and the current regulator of the battery – were selected, the basic principles of power components reservation ensuring the operability of the equipment in case of a single failure of any component without loss of performance and deterioration of RME parameters as a whole are shown.

Block-modular construction method is used for optimal layout and high reliability of the RME, it ensures uniform heat removal from electronic components, which is especially important in vacuum conditions, minimum dimensions and mass optimization of the RME, as well as high mechanical strength of the structure.

The implemented principles of building the RME for PPTS using this approach will allow to increase the active lifetime (ALT) and reliability of the spacecraft with a simultaneous decrease in mass and dimension parameters.

Siberian Aerospace Journal. 2020;21(2):236-242
pages 236-242 views

Modeling of the stress-strain state of rocket-space technology structural elements manufactured by using additive technologies

Ushakova E.S.

Abstract

One of the promising areas for improving the methods of manufacturing structural elements of rocket and space technology is the use of selective laser melting technology which represents a unique opportunity to manufacture metal products by melting powder and producing a one-piece solid phase structure. However, pores and other structural defects can appear in the formed element during laser sintering which causes a decrease in the strength characteristics of the parts produced. An important step in the additive technologies introduction is the development of methodology for the preliminary prediction of the strength characteristics of manufactured structural elements under the influence of mechanical loads with the help of mathematical modeling. The methodology for estimating the material strength reduction of a rocket-space technology element obtained using additive technologies by simulating a porous structure and calculating the characteristics of the stress-strain state is presented.

The proposed mathematical model and the methodology for calculating the specimen loading on the basis of the distortion energy theory allow calculating the stress-strain state in the process of numerical simulation for different values ​​of the pore diameter. The reduction in yield strength due to the material porosity of the part is estimated using a coefficient equal to the ratio of equivalent stresses arising when a load is applied to a specimen manufactured using traditional and additive technologies. The value of the introduced coefficient characterizes the structure of the grown product and is considered as a function of the random arrangement of pores in the specimen under study. The appearance of pores is the result of a combination of factors: the composition and dispersion of the original metal powder, feed rate, removal distance and laser power during sintering, part orientation and sintering direction, the height of the level of powder deposited on a special base before sintering, etc.

The paper evaluates the reduction in strength for the working part of a series of tensile test specimens grown from metal powder of different dispersity. The non-linear nature of the dependence of the yield strength on the particle diameter of the original metal powder is established. The maximum value of the yield strength corresponds to the specimen with the minimum value of the total surface area of the pores.

Siberian Aerospace Journal. 2020;21(2):243-250
pages 243-250 views

Solar thermal propulsion systems with various high-temperature power sources

Finogenov S.L., Kolomentsev A.I.

Abstract

The paper provides an overview of space thermal propulsion (STP) systems using concentrated solar energy as the main source of power. The paper considers solar thermal rocket engines of various configurations including those with afterburning of hydrogen heated in the “concentrator – absorber” system (CAS) with various oxidizers. Together with hydrogen the oxidizers form high-energy fuel compositions with a high value of ratio of components mass flow-rates which allows reducing the dimension of the CAS. The extreme dependences of the engine thrust on the specific impulse are shown for various values ​​of the hydrogen heating temperature and the oxidizer-to-fuel ratio. The coefficients of the regression dependencies for the efficiency of a two-stage absorber and an absorber with the maximum non-isothermal heating having the highest possible energy efficiency are presented. The algorithms for calculating the main design parameters of the STP system as a part of a spacecraft (SC) are given, taking into account the ballistic parameters of the multi-turn transfer trajectory with multiple active segments applied to the STP systems having an energy-efficient non-isothermal CAS. The engine configurations with thermal heat accumulation and possible afterburning of heated hydrogen are also considered. Thermal accumulation allows accumulating energy in the solar-absorber during passive movement in the illuminated portions of the transfer orbits regardless of the lighting conditions of the apsidal orbit portions where the engine is turned on. Suitable heat-accumulating phase transition materials (HAM) such as the eutectic alloy of boron and silicon as well as refractory beryllium oxide are selected for different phases of the interorbital transfer to the geostationary Earth orbit (GEO). The main characteristics of different configurations of the STP systems in the problem of placing a spacecraft (SC) into high-energy GEO orbits are shown. A model of the SC-STP system operation is given taking into account ballistic parameters and the possibility of accumulating thermal energy. It is shown that the oxidizer-to-fuel ratio in STP systems with thermal energy storage (TES) increases with the decrease of the interorbital transfer time. The STP configurations with a two-stage TES showing a large energy-mass efficiency at moderate values ​​of the solar concentrator accuracy parameter are considered.

Siberian Aerospace Journal. 2020;21(2):251-265
pages 251-265 views

Section 3. Technological Processes and Materials

The process of nanomodifying cast aluminum alloy ingots for components of aerospace vehicles

Krushenko G.G., Nazarov V.P., Reshetnikova S.N., Dvirnyy G.V.

Abstract

Currently, increasing attention has been paid to such a class of materials as nanopowders (NP) of chemical compounds, which are ultra-thin formations of not more than 100 nm in size. Such attitude to these materials is explained by the fact that they have unique physical, chemical and mechanical properties significantly different from the properties of materials of the same chemical composition in a massive state, and these properties can be transferred to some extent from them or with their participation to the products.

The existing methods of introducing NP into metal melts could not be used due to their special properties in comparison with coarse powders, and therefore a new method of their introduction into the melt was developed, excluding direct contact of NP particles with oxygen and unhindered penetration of particles into the melt through the oxide layer. The essence of the method was as follows. In the aluminum container filled up with aluminum particles or deformable aluminum alloys D1 or D16 and various NP (nitrides, carbides, oxides, etc.), and this composition was pressed into the rod, with its help NP was introduced into the melt during casting of aluminum ingots and deformable aluminum alloys.

The results of the study showed that this excludes the appearance of cracks in the ingots, as well as improves their technological and mechanical properties.

Siberian Aerospace Journal. 2020;21(2):268-276
pages 268-276 views

The research of thermophysical properties of the working environment for abrasive-extrusion processing

Pshenko E.B., Shestakov I.Y., Remizov I.A., Veretnova T.A.

Abstract

The most important resource for improving the performance of parts is the reduction of the surface roughness. One of the promising ways to reduce the surface roughness is the abrasive extrusion processing. When developing the AEP technology, it is necessary to know the flow rate (pressure) of the WE, which depends on the viscosity of the latter. In turn, the viscosity of the WE is determined by its temperature. The temperature of the working environment at AEP can be calculated if the coefficients of thermal conductivity and thermal diffusivity of the WE are known. The working environment for AEP consists of two components, therefore, the coefficient of thermal conductivity can be calculated by known formulas. However, the calculation error is significant, therefore, the experimental determination of the above-mentioned coefficients is required. The installations for the coefficients research have been presented, the methods of conducting experiments have been developed. After mathematical processing of the experiments results by means of the AdvanceGrapher v. 2.11, the dependences of the thermal conductivity and thermal diffusivity on the abrasive concentration have been obtained. The studies of the thermophysical properties of the working environment have shown that the values ​​of thermal conductivity and thermal diffusivity of the WE are mainly determined by the concentration of abrasive grains in the working environment. The direct dependence of these coefficients on the degree of filling the working environment with abrasive grains has been established.

Siberian Aerospace Journal. 2020;21(2):277-283
pages 277-283 views

Mathematical model of a linear electrodynamic engine operation on impact with account for elastic deformation of the hardened surface

Shvaleva N.A., Fadeev A.A., Eresko T.T.

Abstract

Operational characteristics of contacting elements of cars and mechanisms are by far defined by a layer quality indicators at the surfaces of contact. One of the ways of increasing details durability, including missile and space equipment details, is the superficial plastic deformation (SPD). In the article aspects of dynamic ways of hardening from the position of the wave theory of blow are considered.

The construction of a shock stand on the basis of a linear electrodynamic drive with a size of 60 mm, operating in a shock-pulse mode, as well as a well-known mathematical model of the workflow – the movement of the armature with the tool at the moment of striking the surface. This model does not fully describe the operation process since the mass of the striker taken into account equaled 1 kg, which does not characterize the process of the impact tool, the purpose of which is the object deformation (for example, work hardening with the aim of surface material sealing or breakdown of the hole in it, or applying license plates markers).

The mathematical model that describes the movement of the armature with the tool, taking into account the elastic deformation of the hardened surface was obtained. In the course of the performed calculation, the magnitude of the elastic deformation of the hardened surface was calculated from the dynamic component of the force impulse applied to it through the indenter (the tip of the impact tool).

The layout of the shock stand with the equipment used, are offered. Experiments on the signal recording with various arrangements of piezoelectric transducers on the anvil – the hardened surface (diagrams of the sensors location are given) were carried out.

Siberian Aerospace Journal. 2020;21(2):284-290
pages 284-290 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies