Uremic Toxin Indoxyl Sulfate and Progression of Chronic Kidney Disease
- 作者: Ryabova T.S.1, Belskikh A.N.1
-
隶属关系:
- Military Medical Academy
- 期: 卷 44, 编号 2 (2025)
- 页面: 207-217
- 栏目: Reviews
- URL: https://journals.eco-vector.com/RMMArep/article/view/678747
- DOI: https://doi.org/10.17816/rmmar678747
- EDN: https://elibrary.ru/UHUWRR
- ID: 678747
如何引用文章
详细
Chronic kidney disease is a progressive disease, which is characterized by a decline in renal function due to various underlying causes. A frequent outcome shared by nearly all chronic and progressive nephropathies is renal fibrosis. Current evidence highlights multiple mechanisms involved in renal fibrosis, including natural aging processes, glomerular hyperperfusion, intratubular hypertension and hyperfiltration, alterations in the expression of mediators responsible for cellular and structural damage, etc. The progression of fibrosis is accompanied by the decline in the renal function, resulting in uremic syndrome characterized by the accumulation of various substances known as uremic toxins. They include low-molecular water-soluble compounds, protein-bound molecules, and medium-molecular compounds. Recent studies suggest that uremic toxins can contribute to the progression of fibrosis. This review summarizes data from retrospective, prospective, and experimental studies, and systematic reviews regarding the impact of uremic toxins on the progression of renal fibrosis. The data were retrieved from bibliographic databases such as MedLine, PubMed, Google Scholar, Scopus, and eLibrary. Only articles published in peer-reviewed scientific journals were included. The search strategy was based on the key terms including хроническая болезнь почек (chronic kidney disease), уремические токсины (uremic toxins), индоксил сульфат (indoxyl sulfate), фиброз почек (renal fibrosis), and эпителиально-мезенхимальный переход (epithelial-mesenchymal transition). Lists of all relevant articles and systematic reviews were manually examined. A total of 114 full-text articles were reviewed, with 60 selected for this review. The review highlights the role of indoxyl sulfate as an active contributor to renal fibrosis, rather than a consequence of chronic kidney disease.
全文:

作者简介
Tatiana S. Ryabova
Military Medical Academy
编辑信件的主要联系方式.
Email: tita74@mail.ru
ORCID iD: 0000-0001-9543-9646
SPIN 代码: 5708-0212
MD, Dr.Sci. (Medicine), Associate Professor of the Nephrology and Efferent Therapy Department
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044Andrey N. Belskikh
Military Medical Academy
Email: d0c62@mail.ru
ORCID iD: 0000-0002-0421-3797
SPIN 代码: 7764-0930
Corresponding Member of RAS, MD, Dr.Sci. (Medicine), professor the Head of the Nephrology and Efferent Therapy Department
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044参考
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):S117–S314. doi: 10.1016/j.kint.2023.10.018
- Richet G. Early history of uremia. Kidney International. 1988;33(5): 1013–1015. doi: 10.1038/ki.1988.102
- Meijers B, Zadora W. Lowenstein J. A Historical Perspective on Uremia and Uremic Toxins. Toxins (Basel). 2024;16(5):227. doi: 10.3390/toxins16050227
- Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel). 2018;10(1):33. doi: 10.3390/toxins10010033
- Vanholder R, Boelaert J, Glorieux G, Eloot S. New methods and technologies for measuring uremic toxins and quantifying dialysis adequacy. Semin Dial. 2015;28:114–124. doi: 10.1111/sdi.12331
- Chen JH, Chiang CK. Uremic Toxins and Protein-Bound Therapeutics in AKI and CKD: Up-to-Date Evidence. Toxins. 2021;14:8–15. doi: 10.3390/toxins14010008
- Duranton F, Cohen G, De Smet R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.201112117
- Rosner MH, Reis T, Husain-Syed F, et al. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin J Am Soc Nephrol. 2021;16(12): 1918–1928. doi: 10.2215/CJN.02660221
- Leong SC, Sirich TL. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel). 2016;8(12):358. doi: 10.3390/toxins8120358
- Enomoto A, Takeda M, Tojo A, et al. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol. 2002;13:1711–1720. doi: 10.1097/01.asn.0000022017.96399.b2
- Poesen R, Mutsaers HA, Windey K, et al. The influence of dietary protein intake on mammalian tryptophan and phenolic metabolites. PLoS One. 2015;10:e0140820. doi: 10.1371/journal.pone.0140820
- Sirich TL, Funk BA, Plummer NS, et al. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol. 2014;25:615–622. doi: 10.1681/ASN.201306059
- Hyun HS, Paik KH, Cho HY. p-Cresyl sulfate and indoxyl sulfate in pediatric patients on chronic dialysis. Korean J Pediatr. 2013;56(4):159–164. doi: 10.3345/kjp.2013.56.4.159
- Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124(1):96–104
- Zschiedrich S, Bork T, Liang W, et al. Targeting mTOR Signaling Can Prevent the Progression of FSGS. J Am Soc Nephrol. 2017;28(7):2144–2157. doi: 10.1681/ASN.2016050519
- Gödel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121:2197–2209. doi: 10.1172/JCI44774
- Nakano T, Watanabe H, Imafuku T, et al. Indoxyl Sulfate Contributes to mTORC1-Induced Renal Fibrosis via The OAT/NADPH Oxidase/ROS Pathway. Toxins (Basel). 2021;13(12):909. doi: 10.3390/toxins13120909
- Deguchi T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002;61:1760–1768. doi: 10.1046/j.1523-1755.2002.00318.x
- Lu CL, Liao CH, Lu KC, Ma MC. TRPV1 Hyperfunction Involved in Uremic Toxin Indoxyl Sulfate-Mediated Renal Tubular Damage. Int J Mol Sci. 2020;21(17):6212. doi: 10.3390/ijms21176212
- Wang WJ, Cheng MH, Sun MF, et al. Indoxyl sulfate induces renin release and apoptosis of kidney mesangial cells. J Toxicol Sci. 2014;39(4): 637–643. doi: 10.2131/jts.39.637
- Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol. 2020;11:569322. doi: 10.3389/fphys.2020.569322
- Brij Mohan KS, Mathew M. Epithelial-mesenchymal transition and its role in renal fibrogenesis. Brazilian Archives of Biology and Technology. 2022;65:22210260. doi: 10.1590/1678-4324-2022210260
- Hajarnis S, Yheskel M, Williams D, et al. Suppression of microRNA Activity in Kidney Collecting Ducts Induces Partial Loss of Epithelial Phenotype and Renal Fibrosis. J Am Soc Nephrol. 2018;29(2):518–531. doi: 10.1681/ASN.2017030334
- Simon N, Hertig A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med. 2015;2:52. doi: 10.3389/fmed.2015.00052
- Lovisa S, Zeisberg M, Kalluri R. Partial Epithelial-to-Mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol Metab. 2016;27:681. doi: 695. 10.1016/j.tem.2016.06.004
- Lovisa S, LeBleu V, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med. 2015;21:998–1009. doi: 10.1038/nm.3902
- Rastaldi MP, Ferrario F, Giardino L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int. 2002;62(1):137–146. doi: 10.1046/j.1523-1755.2002.00430.x
- Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol. 2022;13:1038073. doi: 10.3389/fphar.2022.1038073
- Savagner P, Brabletz T, Cheng C, et al. Twenty Years of Epithelial-Mesenchymal Transition: A State of the Field from TEMTIA X. Cells Tissues Organs. 2024;213(4):297–303. doi: 10.1159/000536096
- Bolati D, Shimizu H, Higashiyama Y, et al. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. Am J Nephrol. 2011;34(4):318–323. doi: 10.1159/000330852
- Kim SH, Yu MA, Ryu ES, et al. Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab Invest. 2012;92(4):488–498. doi: 10.1038/labinvest.2011.194
- Chang LC, Sun HL, Tsai CH, et al. 1,25(OH)2 D3 attenuates indoxyl sulfate-induced epithelial-to-mesenchymal cell transition via inactivation of PI3K/Akt/β-catenin signaling in renal tubular epithelial cells. Nutrition. 2020;69:110554. doi: 10.1016/j.nut.2019.110554
- Hommos MS, Glassock RJ, Rule AD. Structural and Functional Changes in Human Kidneys with Healthy Aging. J Am Soc Nephrol. 2017;28(10): 2838–2844. doi: 10.1681/ASN.2017040421
- Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–590. doi: 10.1038/s41574-018-0059-4
- Yang Y, Mihajlovic M, Janssen MJ, Masereeuw R. The Uremic Toxin Indoxyl Sulfate Accelerates Senescence in Kidney Proximal Tubule Cells. Toxins (Basel). 2023;15(4):242. doi: 10.3390/toxins15040242
- Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23–24):1565–1576. doi: 10.1101/gad.343129.120
- Yang Y, Mihajlovic M, Masereeuw R. Protein-Bound Uremic Toxins in Senescence and Kidney Fibrosis. Biomedicines. 2023;1(9):2408. doi: 10.3390/biomedicines11092408
- Mihajlovic M, Krebber MM, Yang Y, et al. Protein-Bound Uremic Toxins Induce Reactive Oxygen Species-Dependent and Inflammasome-Mediated IL-1beta Production in Kidney Proximal Tubule Cells. Biomedicines. 2021;9:1326. doi: 10.3390/biomedicines910132637
- Lee WC, Li LC, Chen JB, Chang HW. Indoxyl sulfate-induced oxidative stress, mitochondrial dysfunction, and impaired biogenesis are partly protected by vitamin C and N-acetylcysteine. Scientific World Journal. 2015;2015(1):620826. doi: 10.1155/2015/62
- Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost. 2007;5(6):1302–1308. doi: 10.1111/j.1538-7836.2007.02540
- Ellis RJ, Small DM, Ng KL, et al. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicologic Pathology. 2018;46(4):449–459. doi: 10.1177/0192623318768171
- Mijit M, Caracciolo V, Melillo A, et al. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10:420. doi: 10.3390/biom100304
- Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29:946–960. doi: 10.1038/s41418-022-00988-z
- Ruan B, Liu W, Chen P, et al. NVP-BEZ235 inhibits thyroid cancer growth by p53-dependent/independent p21 upregulation. Int J Biol Sci. 2020;16(4):682–693. doi: 10.7150/ijbs.37592
- Yang Y, Mihajlovic M, Janssen MJ, Masereeuw R. The Uremic Toxin Indoxyl Sulfate Accelerates Senescence in Kidney Proximal Tubule Cells. Toxins (Basel). 2023;15(4):242. doi: 10.3390/toxins15040242
- Shimizu H, Yisireyili M, Nishijima F, Niwa T. Indoxyl sulfate enhances p53-TGF-β1-Smad3 pathway in proximal tubular cells. Am J Nephrol. 2013;37:97–103. doi: 10.1159/000346420
- Kamprom W, Tawonsawatruk T, Mas-Oodi S, et al. P-cresol and Indoxyl Sulfate Impair Osteogenic Differentiation by Triggering Mesenchymal Stem Cell Senescence. Int J Med Sci. 2021;18(3):744–755. doi: 10.7150/ijms.48492
- Shimi T, Butin-Israeli V, Adam SA, et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 2011;25:2579–2593. doi: 10.1101/gad.179515.111
- Ashraf S, Santerre P, Kandel R. Induced senescence of healthy nucleus pulposus cells is mediated by paracrine signaling from TNF-α-activated cells. FASEB J. 2021;35(9):21795. doi: 10.1096/fj.202002201R
- Rapa SF, Prisco F, Popolo A, et al. Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response. Int J Mol Sci. 2021;22:1135. doi: 10.3390/ijms22031135
- Savira F, Kompa AR, Magaye R, et al. Apoptosis signal-regulating kinase 1 inhibition reverses deleterious indoxyl sulfate-mediated endothelial effects. Life Sci. 2021;272:119267. doi: 10.1016/j.lfs.2021.119267
- Ellis RJ, Small DM, Ng KL, et al. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicologic Pathology. 2018;46(4):449–459. doi: 10.1177/01926233187
- Isaka Y. Targeting TGF-β Signaling in Kidney Fibrosis. Int J Mol Sci. 2018;19(9):2532. doi: 10.3390/ijms19092532
- Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–139. doi: 10.1038/cr.2008.328
- Cheng TH, Ma MC, Liao MT. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins (Basel). 2020;12(11):684. doi: 10.3390/toxins12110684
- Miyazaki T, Ise M, Seo H, Niwa T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int Suppl. 1997;62:S15–22. PMID: 9350672
- Yisireyili M, Takeshita K, Saito S, et al. Indole-3-propionic acid suppresses indoxyl sulfate-induced expression of fibrotic and inflammatory genes in proximal tubular cells. Nagoya J Med Sci. 2017;79(4):477–486. doi: 10.18999/nagjms.79.4.477
- Milanesi S, Garibaldi S, Saio M, et al. Indoxyl Sulfate Induces Renal Fibroblast Activation through a Targetable Heat Shock Protein 90-Dependent Pathway. Oxid Med Cell Longev. 2019;17:2050183. doi: 10.1155/2019/2050183
- Jia M, Lin L, Xun K, et al. Indoxyl Sulfate Aggravates Podocyte Damage through the TGF-β1/Smad/ROS Signalling Pathway. Kidney Blood Press Res. 2024;49(1):385–396. doi: 10.1159/000538858
- Iida S, Kohno K, Yoshimura J, et al. Carbonic-adsorbent AST-120 reduces overload of indoxyl sulfate and the plasma level of TGF-beta1 in patients with chronic renal failure. Clin Exp Nephrol. 2006;10(4):262–267. doi: 10.1007/s10157-006-0441-8
补充文件
