Current insights in brain protection for the sick newborn infant

Abstract


This paper presents an overview of the modern antenatal and postnatal strategies in brain protection for both preterm and term born infants. It is known, that the two most common causes of neonatal brain injury are prematurity and hypoxic-ischemic encephalopathy (HIE) in the term born infant. Approximately one in nine babies is born before term. Nowadays these preterm born infants more often survive the neonatal period due to developments in treatment options in the last decades. They are however at a high risk for developing brain damage and neurodevelopmental impairment later in life. Approximately 40 % of survivors develop long-term intellectual or physical impairment, including cerebral palsy (CP). Term born infants born after perinatal asphyxia may also survive with a variety of neurocognitive disorders due to brain damage as a result from the hypoxic ischemic encephalopathy (HIE). Untreated, the sequelae of moderate to severe HIE includes a 60 to 65 % risk of mental retardation, CP, hydrocephalus, seizures, or death. The main goal in neonatal care for these surviving but vulnerable infants is to preserve brain function and prevent further brain damage, in order to improve neurocognitive outcome and the subsequent quality of life. In preterm brain protection antenatal strategies besides educating and supporting pregnant women regarding life style and healthy food intake, centralization of care for extreme preterm born infants, fetal monitoring in high risk pregnancies, administration of antenatal steroids for lung maturity, the use of intravenous magnesium sulfate administration to mothers just before preterm delivery are of great importance. In the postnatal strategies setting optimal oxygen saturation, the avoidance of prolonged artificial mechanical ventilation, hypoglycemia, hypocapnia electrolytic imbalances, hyperbilirubinemia, blood pressure shifts, stress and pain, inflammation, necrotizing enterocolitis as well as adequate feeding strongly predict neurocognitive outcome. In the term asphyxiated infants the brain experiences a cascade of problems occurring after energy failure which in fact are the basis of neuroprotective strategies. These strategies consist of anti-oxidative, anti-inflammatory, anti-excitatoxic and anti-apoptotic agents, and in the future possibly neurogenetic approaches, including stem cell therapy. In antenatal strategies prevention of asphyxia starts at promoting a healthy pregnancy and of an early recognition of fetal, placental or perinatal risk factors for hypoxia. Recent experimental trials have shown a possible beneficial effect of antenatal administration of the anti-oxidative agent allopurinol in a HIE. In postnatal strategies two methods to achieve therapeutic hypothermia were evaluated in newborn infants with HIE: whole body cooling and selective head cooling with mild systemic hypothermia with the conclusion: hypothermia should be instituted in term infants with moderate-to-severe hypoxic ischemic encephalopathy if identified before six hours of age. Monitoring of brain activity by means of amplitude integrated electroencephalography to identify infants with HIE is promising. Potential agents with either anti-oxidative, anti-inflammatory, anti-excitatoxic or anti-apoptotic capacities are currently being investigated in various phases of research.

Full Text

Restricted Access

About the authors

E MW Kooi

Beatrix Children’s Hospital, University Medical Center

Email: e.kooi@umcg.nl
MD, PhD, Division of Neonatology, neonatologist

References

  1. Alfirevic Z., Devane D., Gyte G. M. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst Rev. 2013; 5: CD006066.
  2. Biasini A., Marvulli L., Neri E., China M., Stella M., Monti F. Growth and neurological outcome in ELBW preterms fed with human milk and extra-protein supplementation as routine practice: do we need further evidence? J Matern Fetal Neonatal Med. 2012; 25 (Suppl 4): 72-74.
  3. Chaudhari T., McGuire W. Allopurinol for preventing mortality and morbidity in newborn infants with hypoxic-ischaemic encephalopathy. Cochrane Database Syst Rev. 2012; 7: CD006817.
  4. Costantine M. M., Weiner S. J., Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Effects of antenatal exposure to magnesium sulfate on neuroprotection and mortality in preterm infants: a meta-analysis. Obstet Gynecol. 2009; 114 (2 Pt 1): 354-64.
  5. Costeloe K., Hennessy E., Gibson A. T., Marlow N., Wilkinson A. R. The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics. 2000; 106 (4): 659-71.
  6. Dingley J., Tooley J., Porter H., Thoresen M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke. 2006; 37 (2): 501-6.
  7. Dingley J., Tooley J., Liu X., Scull-Brown E., Elstad M., Chakkarapani E. et al. Xenon ventilation during therapeutic hypothermia in neonatal encephalopathy: a feasibility study. Pediatrics. 2014; 133 (5): 809-18.
  8. Doesburg S. M., Chau C. M., Cheung T. P., Moiseev A., Ribary U., Herdman A. T. et al. Neonatal pain-related stress, functional cortical activity and visual-perceptual abilities in school-age children born at extremely low gestational age. Pain. 2013; 154 (10): 1946-52.
  9. Doyle L. W., Schmidt B., Anderson P. J., Davis P. G., Moddemann D., Grunau R. E. et al. Reduction in developmental coordination disorder with neonatal caffeine therapy. J Pediatr. 2014; 165 (2): 356-359.e2.
  10. Edwards A. D., Tan S. Perinatal infections, prematurity and brain injury. Curr Opin Pediatr. 2006; 18 (2): 119-24.
  11. Fan X., van Bel F., van der Kooij M. A., Heijnen C. J., Groenendaal F. Hypothermia and erythropoietin for neuroprotection after neonatal brain damage. Pediatr Res. 2013; 73 (1): 18-23.
  12. Glass H. C., Kan J., Bonifacio S. L., Ferriero D. M. Neonatal seizures: treatment practices among term and preterm infants. Pediatr Neurol. 2012; 46 (2): 111-5.
  13. Groenendaal F., Termote J. U., van der Heide-Jalving M., van Haastert I. C., de Vries L. S. Complications affecting preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr. 2010; 99 (3): 354-8.
  14. Iwai M., Stetler R. A., Xing J., Hu X., Gao Y., Zhang W. et al. Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke. 2010; 41 (5): 1032-7.
  15. Jacobs S. E., Berg M., Hunt R., Tarnow-Mordi W. O., Inder T. E., Davis P. G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev. 2013; 1: CD003311.
  16. Jellema R. K., Wolfs T. G., Lima Passos V., Zwanenburg A., Ophelders D. R., Kuypers E. et al. Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia. PLoS One. 2013; 8 (8): e73031.
  17. Juul S. E., Ferriero D. M. Pharmacologic neuroprotective strategies in neonatal brain injury. Clin Perinatol 2014; 41 (1): 119-31.
  18. Kaandorp J. J., Benders M. J., Rademaker C. M., Torrance H. L., Oudijk M. A., de Haan T. R. et al. Antenatal allopurinol for reduction of birth asphyxia induced brain damage (ALLO-Trial); a randomized double blind placebo controlled multicenter study. BMC Pregnancy Childbirth. 2010; 10: 8-2393-10-8.
  19. Kaandorp J. J., Derks J. B., Oudijk M. A., Torrance H. L., Harmsen M. G., Nikkels P. G. et al. Antenatal allopurinol reduces hippocampal brain damage after acute birth asphyxia in late gestation fetal sheep. Reprod Sci. 2014; 21 (2): 251-259.
  20. Kollée L. A., Kollee L. A., Ens-Dokkum M. H., Veen S., Brand R., Verloove-Vanhorick S. P. et al. Five-year outcome of preterm and very low birth weight infants: a comparison between maternal and neonatal transport. Obstet Gynecol. 1992; 80 (4): 635-8.
  21. Kollee L. A., den Ouden A. L., Drewes J. G., Brouwers H. A., Verwey R. A., Verloove-Vanhorick S. P. Increase in perinatal referral to regional centers of premature birth in The Netherlands: comparison 1983 and 1993. Ned Tijdschr Geneeskd. 1998; 142 (3): 131-4.
  22. Lodha A., Seshia M., McMillan D. D., Barrington K., Yang J., Lee S. K. et al. Association of Early Caffeine Administration and Neonatal Outcomes in Very Preterm Neonates. JAMA Pediatr. 2014 Nov 17.
  23. Marlow N., Bennett C., Draper E. S., Hennessy E. M., Morgan A. S., Costeloe K. L. Perinatal outcomes for extremely preterm babies in relation to place of birth in England: the EPICure 2 study. Arch Dis Child Fetal Neonatal Ed. 2014; 99 (3): F181-8.
  24. Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane DB Syst Rev. 2006; (3) : CD004454.
  25. Roze E., Ta B. D., van der Ree M. H., Tanis J. C., van Braeckel K. N., Hulscher J. B. et al. Functional impairments at school age of children with necrotizing enterocolitis or spontaneous intestinal perforation. Pediatr Res. 2011; 70 (6): 619-25.
  26. Sarnat H. B., Sarnat M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol. 1976; 33 (10): 696-705.
  27. Saugstad O. D., Aune D., Aguar M., Kapadia V., Finer N., Vento M. Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at
  28. Shah D. K., Wusthoff C. J., Clarke P., Wyatt J. S., Ramaiah S. M., Dias R. J. et al. Electrographic seizures are associated with brain injury in newborns undergoing therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014; 99 (3): F219-24.
  29. Shah N. A., Wusthoff C. J. How to use: amplitude-integrated EEG (aEEG). Arch Dis Child Educ Pract Ed. 2014; 17.
  30. Stoelhorst G. M., Rijken M., Martens S. E., Brand R., den Ouden A. L., Wit J. M. et al. Changes in neonatology: comparison of two cohorts of very preterm infants (gestational age №32 weeks): the Project On Preterm and Small for Gestational Age Infants 1983 and the Leiden Follow-Up Project on Prematurity 1996-1997. Pediatrics. 2005; 115 (2): 396-405.
  31. Thompson C. M., Puterman A. S., Linley L. L., Hann F. M., van der Elst C. W., Molteno C. D. et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr. 1997; 86 (7): 757-61.
  32. Thorp J. A., Jones P. G., Clark R. H., Knox E., Peabody J. L. Perinatal factors associated with severe intracranial hemorrhage. Am J Obstet Gynecol. 2001; 185 (4): 859-62.
  33. van der Kooij M. A., Groenendaal F., Kavelaars A., Heijnen C. J., van Bel F. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia. Brain Res Rev. 2008; 59 (1): 22-33.
  34. Volpe J. J.Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009; 8 (1): 110.
  35. Wong D., Abdel-Latif M., Kent A., NICUS Network. Antenatal steroid exposure and outcomes of very premature infants: a regional cohort study. Arch Dis Child Fetal Neonatal Ed. 2014; 99 (1): F12-20.
  36. Yu X., Shacka J. J., Eells J. B., Suarez-Quian C., Przygodzki R. M., Beleslin-Cokic B. et al. Erythropoietin receptor signalling is required for normal brain development. Development. 2002; 129 (2): 505-516.

Statistics

Views

Abstract - 1169

PDF (Russian) - 247

Cited-By


PlumX


Copyright (c) 2015 Kooi E.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies