Lysosomal storage diseases. Sphingolipidoses — gangliosidoses

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Epidemiology, clinical, biochemical and molecular genetic characteristics of gangliosidoses, genetically heterogeneous group of autosomal recessive diseases caused by hereditary deficiency of lysosomal glycohydrolases involved in the catabolism of GM1-, GM2- and GA2-gangliosides, are presented. Three clinical forms of GM1 gangliosidosis are caused by hereditary deficiency of lysosomal β-galactosidase, one of the activities of which is the release of galactose from carbohydrate complexes. As a result, GM1-ganglioside and, to a lesser extent, keratan sulfate accumulate in the lysosomes of neurons and other cells. Three genetically heterogeneous forms of GM2-gangliosidosis are associated with dysfunction of hexosaminidase activity. Tay–Sachs disease, or GM2 ganglioside variant B, is caused by mutations in the hexosaminidase alpha chain HEXA gene. Sandhoff’s disease is associated with mutations in the HEXB gene for the hexosaminidase beta chain. In this case, there is a deficiency of the A and B components of the enzyme — the null variant of GM2 gangliosidosis. In variant AB, or juvenile GM2 gangliosidosis, all hexosaminidase components are present, but the activating factor is defective due to mutations in the GM2A gene. All types of gangliosidosis are characterized by progressive retardation of psychomotor development and early death of patients, most often under the age of 3 years. The frequency of various types of gangliosidoses in different populations does not exceed 1 : 300,000. An exception is the ethic group of Ashkenazi Jews, in which the incidence of Tay–Sachs disease, reaches 1 : 3000, which makes total screening of heterozygotes and prenatal diagnosis of the disease in high-risk families economically justified. The article highlights the importance of experimental models for studying the molecular basis of pathogenesis and developing various therapeutic approaches, such as bone marrow transplantation, enzyme replacement therapy and substrate reducing therapy, gene therapy, and genome editing. Clinical examples of patients with gangliosidosis are given to improve the efficiency of diagnostics of these rare diseases by clinicians.

Full Text

Restricted Access

About the authors

Viktoria N. Gorbunova

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: vngor@mail.ru

PhD, Dr. Sci. (Biol.), Professor, Department of General and Molecular Medical Genetics

Russian Federation, Saint Petersburg

Natalia V. Buchinskaia

Saint Petersburg State Pediatric Medical University; Saint Petersburg State Medical Diagnostic Center (Genetic Medical Center)

Email: nbuchinskaia@gmail.com
ORCID iD: 0000-0002-2335-3023
SPIN-code: 4820-4246

MD, PhD pediatrician, geneticist, Consulting Department

Russian Federation, Saint Petersburg; Saint Petersburg

Lidia V. Liazina

Saint Petersburg State Medical Diagnostic Center (Genetic Medical Center)

Email: mgccons@mail.ru
ORCID iD: 0000-0002-1252-1968

MD, PhD geneticist, Consulting Department

Russian Federation, Saint Petersburg

Anastasia O. Vechkasova

Saint Petersburg State Medical Diagnostic Center (Genetic Medical Center)

Email: vechkasova.nastia@mail.ru
ORCID iD: 0009-0004-8775-9630

General Practitioner, Resident Geneticist

Russian Federation, Saint Petersburg

References

  1. Alekseev VV, Alipov AN, Karpishchenko AI. Meditsinskie laboratornye tekhnologii. Vol. 2. Ed. dy A.I. Karpishchenko. Moscow: GEOTAR-Media, 2013. 792 p. (In Russ.)
  2. Gorbunova VN. Molecular genetics — a way to the individual personalized medicine. Pediatrician (St. Petersburg). 2013;4(1): 115–121. (In Russ.) doi: 10.17816/PED41115-121
  3. Gorbunova VN. Congenital metabolic diseases. Lysosomal storage diseases. Pediatrician (St. Petersburg). 2021;12(2):73–84. (In Russ.) doi: 10.17816/PED12273-83
  4. Gorbunova VN, Baranov VS. Vvedenie v molekulyarnuyu diagnostiku i genoterapiyu nasledstvennykh zabolevanii. Saint Petersburg: Spetsial’naya Literatura, 1997. 287 p. (In Russ.)
  5. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases: mucopolysaccharidosis type I and II. Pediatrician (St. Petersburg). 2021;12(3):69–83. (In Russ.) doi: 10.17816/PED12369-83
  6. Gorbunova VN, Buchinskaya NV. Lysosomal storage diseases. Mucopolysaccharidosis type III, sanfilippo syndrome. Pediatrician (St. Petersburg). 2021;12(4):69–82. (In Russ.) doi: 10.17816/PED12469-81
  7. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Mucopolysaccharidosis types IV, VI, and VII — Morquio, Maroto–Lamy and Sly syndrome. Pediatrician (St. Petersburg). 2021;12(6):107–125. (In Russ.) doi: 10.17816/PED126107-125
  8. Gorbunova VN, Buchinskaia NV, Janus GA, Kostik MM. Lysosomal storage diseases. Sphingolipidoses — Fabry, Gaucher and Farber diseases. Pediatrician (St. Petersburg). 2022;13(2):61–88. (In Russ.) doi: 10.17816/PED13261-88
  9. Gorbunova V.N., Buchinskaia N.V. Lysosomal storage diseases. Sphingolipidoses — sphingomyelin lipidosis, or Niemann–Pick disease, Wolman disease. Pediatrician (St. Petersburg). 2022;13(4):5–27. (In Russ.) doi: 10.17816/PED1345-27
  10. Arpaia E, Dumbrille-Ross A, Maler T, et al. Identification of an altered splice site in Ashkenazi Tay–Sachs disease. Nature. 1988;333:85–86. doi: 10.1038/333085a0
  11. Beutler E, Kuhl W, Comings D. Hexosaminidase isozyme in type O Gm2 gangliosidosis (Sandhoff–Jatzkewitz disease). Am J Hum Genet. 1975;27(5):628–638.
  12. Bikker H, van den Berg FM, Wolterman RA, et al. Demonstration of a Sandhoff disease-associated autosomal 50-kb deletion by field inversion gel electrophoresis. Hum Genet. 1989;81:287–288. doi: 10.1007/BF00279006
  13. Bikker H, van den Berg FM, Wolterman RA, et al. Distribution and characterization of a Sandhoff disease-associated autosomal 50-kb deletion in the gene encoding the human beta-hexosaminidase beta-chain. Hum Genet. 1990;85:327–329. doi: 10.1007/BF00206756
  14. Brown CA, Mahuran DJ. Beta-hexosaminidase isozimes from cells cotransfected with alpha and beta cDNA constructs: analysis of the alpha-subunit missense mutation associated with the adult form of Tay–Sachs disease. Am J Hum Genet. 1993;53(2):497–508.
  15. Burg J, Conzelmann E, Sandhoff K, et al. Mapping of the gene coding for the human GM2 activator protein to chromosome 5. Ann Hum Genet. 1985;49(1):41–45. doi: 10.1111/j.1469-1809.1985.tb01674.x
  16. Cachon-Gonzalez MB, Zaccariotto E, Cox TM. Genetics and therapies for GM2 gangliosidosis. Curr Gene Ther. 2018;18(2):68–89. doi: 10.2174/1566523218666180404162622
  17. Cantor RM, Kaback MM. Sandhoff disease (SHD) heterozygote frequencies (HF) in North American (NA) Jewish (J) and non-Jewish (NJ) populations: implication for carrier (C) screening. (Abstract) Am J Hum Genet. 1985;37: A48.
  18. Chamoles NA, Blanco M, Gaggioli D, Casentini C. Tay–Sachs and Sandhoff diseases: enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta. 2002;318(1–2):133–137. doi: 10.1016/S0009-8981(02)00002-5
  19. Chern CJ, Beutler E, Kuhl W, et al. Characterization of heteropolymeric hexosaminidase A in human x mouse hybrid cells. PNAS. 1976;73(10):3637–3640. doi: 10.1073/pnas.73.10.3637
  20. Conzelmann E, Sandhoff K. AB variant of infantile Gm2-gangliosidoses: deficiency of a factor necessary for stimulation of hexosaminidase A-catalysed degradation of ganglioside Gm2 and glycolipid Ga2. PNAS. 1978;75(8):3979–3983. doi: 10.1073/pnas.75.8.3979
  21. De Braekeleer H, Hetchman P, Andermann E, Kaplan F. The French Canadian Tay–Sachs disease deletion mutation: identification of probable founders. Hum Genet. 1992;89:83–87. doi: 10.1007/BF00207048
  22. Demir SA, Timur ZK, Ateş N, et al. GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay–Sachs disease. J Neuroinflammation. 2020;17(1):277. doi: 10.1186/s12974-020-01947-6
  23. Dlott B, d’Azzo A, Quon DVK, Neufeld EF. Two mutations produce intron insertion in mRNA and elongated beta-subunit of human beta-hexosaminidase. J Biol Chem. 1990;265(26):17921–17927. doi: 10.1016/S0021-9258(18)38251-6
  24. Drousiotou A, Stylianidou G, Anastasiadou V, et al. Sandhoff disease in Cyprus: population screening by biochemical and DNA analysis indicates a high frequency of carriers in the Maronite community. Hum Genet. 2000;107:12–17. doi: 10.1007/s004390000324
  25. Dogbevia G, Grasshoff H, Othman A, et al. Brain endothelial specific gene therapy improves experimental Sandhoff disease. J Cereb Blood Flow Metab. 2020;40(6):1338–1350. doi: 10.1177/0271678X19865917
  26. de Formiga FL, Poenaru L, Couronne F, et al. Interstitial deletion of chromosome 15: Two cases. Hum Genet. 1988;80: 401–404. doi: 10.1007/BF00273663
  27. Espejo-Mojica AJ, Rodríguez-López A, Li R, et al. Human recombinant lysosomal β-Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay–Sachs fibroblasts. Am J Med Genet C Semin Med Genet. 2020;184(4):885–895. doi: 10.1002/ajmg.c.31849
  28. Gilbert F, Kucherlapati RS, Creagan RP, et al. Tay–Sachs’ and Sandhoff’s diseases: the assignment of genes for hexosaminidase A and B to individual human chromosomes. PNAS. 1975;72(1):263–267. doi: 10.1073/pnas.72.1.263
  29. Grebner EE, Tomczak J. Distribution of three alpha-chain beta-hexosaminidase A mutations among Tay–Sachs carriers. Am J Hum Genet. 1991;48(3):604–607.
  30. Guidotti JE, Mignon A, Haase G, et al. Adenoviral gene therapy of the Tay–Sachs disease in hexosaminidase A-deficient knock-out mice. Hum Mol Genet. 1999;8(5):831–838. doi: 10.1093/hmg/8.5.831
  31. Hahn CN, del Pilar Martin M, Schroder M, et al. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet. 1997;6(2):205–211. doi: 10.1093/hmg/6.2.205
  32. Heng HHQ, Xie B, Shi X-M, et al. Refined mapping of the GM2 activator protein (GM2A) locus to 5q31.3-q33.1, distal to the spinal muscular atrophy locus. Genomics. 1993;18(2):429–431. doi: 10.1006/geno.1993.1491
  33. Higaki K, Li L, Bahrudin U, et al. Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat. 2011;32(7):843–852. doi: 10.1002/humu.21516
  34. Hinek A. Biological roles of the non-integrin elastin/laminin receptor. Biol Chem. 1996;377:471–480.
  35. Hinek A, Zhang S, Smith AC, Callahan JW. Impaired elastic-fiber assembly by fibroblasts from patients with either Morquio B disease or infantile GM1-gangliosidosis is linked to deficiency in the 67-kD spliced variant of beta-galactosidase. Am J Hum Genet. 2000;67(2):23–36. doi: 10.1086/302968
  36. Huang J-Q, Trasler JM, Igdoura SA, et al. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay–Sachs and Sandhoff diseases. Hum Mol Genet. 1997;6(11): 1879–1885. doi: 10.1093/hmg/6.11.1879
  37. Leal A-F, Benincore-Flórez E, Solano-Galarza D, et al. GM2 Gangliosidoses: Clinical features, pathophysiological aspects, and current therapies. Int J Mol Sci. 2020;21(17):6213. doi: 10.3390/ijms21176213
  38. Jeyakumar M, Butters TD, Cortina-Borja M, et al. Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin. PNAS. 1999;96(11): 6388–6393. doi: 10.1073/pnas.96.11.6388
  39. Lalley PA, Rattazzi MC, Shows TB. Human beta-D-N-acetylhexosaminidases A and B: expression and linkage relationships in somatic sell hybrids. PNAS. 1975;71(4):1569–1573. doi: 10.1073/pnas.71.4.1569
  40. Liu Y, Wada R, Kawai H, et al. A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J Clin Invest. 1999;103:497–505. doi: 10.1172/JCI5542
  41. Luu AR, Wong C, Agrawal V, et al. Intermittent enzyme replacement therapy with recombinant human β-galactosidase prevents neuraminidase 1 deficiency. J Biol Chem. 2020;295(39): 13556–13569. doi: 10.1074/jbc.RA119.010794
  42. Matsuda J, Suzuki O, Oshima A, et al. Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. PNAS. 2003;100(26):15912–15917. doi: 10.1073/pnas.2536657100
  43. Mattei JF, Balestrazzi P, Baeteman MA, Mattei MG. De novo balanced translocation (5;13)(q11; p11) in a child with Franceschetti syndrome and significant decrease of hexosaminidase B. (Abstract) Cytogenet Cell Genet. 1984;37:532.
  44. McInnes B, Potier M, Wakamatusi N, et al. An unusial splicing mutation in the HEXB gene is associated with dramatically different phenotypes in patients from different racial backgrounds. J Clin Invest. 1992;90(2):306–314. doi: 10.1172/JCI115863
  45. Morreau H, Galjart NJ, Gillemans N, et al. Alternative splicing of beta-galactosidase mRNA generates the classic lysosomal enzyme and a beta-galactosidase-related protein. J Biol Chem. 1989;264(34):20655–20663. doi: 10.1016/S0021-9258(19)47114-7
  46. Morrone A, Bardelli T, Donati MA, et al. Beta-galactosidase gene mutations affecting the lysosomal enzyme and the elastin-binding protein in GM1-gangliosidosis patients with cardiac involvement. Hum Mutat. 2000;15(4):354–366. doi: 10.1002/(SICI)1098-1004(200004)15:4<354::AID-HUMU8>3.0.CO;2-L
  47. Myerowitz R, Hogikyan ND. Deletion involved Alu sequences in the beta-hexosaminidase alpha-chain gene of French Canadians with Tay–Sachs disease. J Biol Chem. 1987;262(32):15396–15399. doi: 10.1016/S0021-9258(18)47738-1
  48. Myerowitz R, Costigan FS. The major defect in Ashkenazi Jews with Tay–Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. 1988;263(35): 18587–18589. doi: 10.1016/S0021-9258(18)37323-X
  49. Myerowitz R, Lawson D, Mizukami H, et al. Molecular pathophysiology in Tay–Sachs and Sandhoff diseases as revealed by gene expression profiling. Hum Mol Genet. 2002;11(11):1343–1350. doi: 10.1093/hmg/11.11.1343
  50. Nakai H, Byers MG, Nowak NJ, Shows TB. Assignment of beta-hexosaminidase A alpha-subunit to human chromosomal region 15q23-q24. Cytogenet Cell Genet. 1991;56(3–4):164. doi: 10.1159/000133077
  51. Nakano T, Suzuki K. Genetic cause of a juvenile form of Sandhoff disease: abnormal splicing of beta-hexosaminidase beta chain gene transcript due to a point mutation within intron 12. J Biol Chem. 1989;264(9):5155–5158. doi: 10.1016/S0021-9258(18)83712-7
  52. Navon R, Proia RL. The mutations in Ashkenazi Jews with adult G(M2)-gangliosidosis, the adult form of Tay–Sachs disease. Science. 1989;243(4897):1471–1474. doi: 10.1126/science.2522679
  53. Neote K, McInnes B, Mahuran DJ, Gravel RA. Structure and distribution of an Alu-type deletion mutation in Sandhoff disease. J Clin Invest. 1990;68(5):1524–1531. doi: 10.1172/JCI114871
  54. Nishimoto J, Nanba E, Inui K, et al. GM1-gangliosidosis (genetic beta-galactosidase deficiency): identification of four mutations in different clinical phenotypes amoung Japanese patients. Am J Hum Genet. 1991;49(3):566–574.
  55. Nishimoto J, Tanaka A, Nanba E, Suzuki K. Expression of the beta-hexosaminidase alpha-subunit gene with the four-base insertion of infantile Jewish Tay–Sachs disease. J Biol Chem. 1991;266(22):14306–14309. doi: 10.1016/S0021-9258(18)98684-9
  56. O’Brien JS. Generalized gangliosidosis. J Pediat. 1969;75(2): 167–186. doi: 10.1016/S0022-3476(69)80387-2
  57. O’Brien JS. Molecular genetics of GM1 beta-galactosidase. Clin Genet. 1975;8(5):303–313. doi: 10.1111/j.1399-0004.1975.tb01507.x
  58. Okada S, O’Brien JS. Generalized gangliosidosis: beta-galactosidase deficiency. Science. 1968;160(3831):1002–1004. doi: 10.1126/science.160.3831.1002
  59. Okada S, O’Brien JS. Tay-Sachs disease: generalized absence of a beta-D-N-acetylhexosaminidase component. Science. 1969;165(3894):698–700. doi: 10.1126/science.165.3894.698
  60. Oshima A, Kyle JW, Miller RD, et al. Cloning, sequencing, and expression of cDNA for human beta-glucuronidase. PNAS. 1987;84(3):685–689. doi: 10.1073/pnas.84.3.685
  61. Oshima A, Tsuji A, Nagao Y, et al. Cloning, sequencing, and expression of cDNA for human beta-galactosidase. Biochem Biophys Res Commun. 1988;157(1):238–244. doi: 10.1016/S0006-291X(88)80038-X
  62. Ou L, Przybilla MJ, Tăbăran AF, et al. A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases. Gene Ther. 2020;27(5):226–236. doi: 10.1038/s41434-019-0120-5
  63. Paw BH, Kaback MM, Neufeld EF. Molecular basis of adult-onset and chronic G(M2) gangliosidoses in patients of Ashkenazi Jewish origin: substitution of serine for glycine at position 269 of the alpha-subunit of beta-hexosaminidase. PNAS. 1989;86(7):2413–2417. doi: 10.1073/pnas.86.7.2413
  64. Paw BH, Moskowitz SM, Uhrhammer N, et al. Juvenile G(M2) gangliosidosis caused by substitution of histidine for arginine at position 499 or 504 of the alpha-subunit of beta-hexosaminidase. J Biol Chem. 1990;265(16):9452–9457. doi: 10.1016/S0021-9258(19)38870-2
  65. Petersen GM, Rotter JI, Cantor RM, et al. The Tay–Sachs disease gene in North American Jewish populations: geographic variations and origin. Am J Hum Genet. 1983;35(6):1258–1269.
  66. Pennybacker M, Liessem B, Moczall H, et al. Identification of domains in human beta-hexosaminidase that determine substrate specificity. J Biol Chem. 1996;271(29):17377–17382. doi: 10.1074/jbc.271.29.17377
  67. Phaneuf D, Wakamatsu N, Huang J-Q, et al. Dramatically different phenotype in mouse models of human Tay–Sachs and Sandhoff diseases. Hum Mol Genet. 1996;5(1):1–14. doi: 10.1093/hmg/5.1.1
  68. Platt FM, Neises GR, Reinkensmeier G, et al. Prevention of lysosomal storage in Tay–Sachs mice treated with N-butyldeoxynojirimycin. Science. 1997;276(5311):428–431. doi: 10.1126/science.276.5311.428
  69. Polo G, Burlina AP, Ranieri E, et al. Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study. Clin Chem Lab Med. 2019;57(12):1863–1874. doi: 10.1515/cclm-2018-1301
  70. Proia RL, Soravia E. Organization of the gene encoding the human beta-hexosaminidase alpha-chain. J Biol Chem. 1987;262(12): 5677–5681. doi: 10.1016/S0021-9258(18)45628-1
  71. Proia RL. Gene encoding the human beta-hexosaminidase beta chain: extensive homology of intron placement in the alpha and beta-chain gene. PNAS. 1988;85(6):1883–1887. doi: 10.1073/pnas.85.6.1883
  72. Risch N, Tang H, Katzenstein H, Ekstein J. Geographic distribution of disease mutations in the Ashkenazi Jewish population supports genetic drift over selection. Am J Hum Genet. 2003;72(4):812–822. doi: 10.1086/373882
  73. Sango K, McDonald MP, Crawley JN, et al. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996;14:348–352. doi: 10.1038/ng1196-348
  74. Sango K, Yamanaka S, Hoffmann A, et al. Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet. 1995;11:170–176. doi: 10.1038/ng1095-170
  75. Santamaria R, Blanco M, Chabas A, et al. Identification of 14 novel GLB1 mutations, including five deletions, in 19 patients with GM1 gangliosidosis from South America. Clin Genet. 2007;71(3):273–279. doi: 10.1111/j.1399-0004.2007.00767.x
  76. Schroder M, Schnabel D, Suzuki K, Sandhoff K. A mutation in the gene of a glycolipid-binding protein (GM2 activator) that causes GM2-gangliosidosis variant AB. FEBS Lett. 1991;290(1–2):1–3. doi: 10.1016/0014-5793(91)81211-P
  77. Schroder M, Schnabel D, Hurwitz N, et al. Molecular genetics of GM2-gangliosidoses AB variant: a novel mutation and expression in BHK cells. Hum Genet. 1993;92:437–440. doi: 10.1007/BF00216446
  78. Seyrantepe V, Demir SA, Timur ZK, et al. Murine Sialidase Neu3 facilitates GM2 degradation and bypass in mouse model of Tay-Sachs disease. Exp Neurol. 2018;299(Pt A):26–41. doi: 10.1016/j.expneurol.2017.09.012
  79. Sonderfeld S, Brendler S, Sandhoff K, et al. Genetic complementation in somatic cell hybrids of four variants of infantile G(M2) gangliosidosis. Hum Genet. 1985;71:196–200. doi: 10.1007/BF00284572
  80. Suzuki Y, Ichinomiya S, Kurosawa M, et al. Therapeutic chaperone effect of N-octyl 4-epi-β-valienamine on murine G(M1)-gangliosidosis. Mol Genet Metab. 2012;106(1):92–98. doi: 10.1016/j.ymgme.2012.02.012
  81. Swallow DM, Islam I, Fox MF, et al. Regional localization of the gene coding for the GM2 activator protein (GM2A) to chromosome 5q32-33 and conformation of the assignment of GM2AP to chromosome 3. Ann Hum Genet. 1993;57(3):187–193. doi: 10.1111/j.1469-1809.1993.tb01594.x
  82. Takano T, Yamanouchi Y. Assignment of human beta-galactosidase-A gene to 3p21.33 by fluorescence in situ hybridization. Hum Genet. 1993;92:403–404. doi: 10.1007/BF01247344
  83. Tanaka A, Ohno K, Suzuki K. GM2-gangliosidosis B1 variant: a wide geographic and ethnic distribution of the specific beta-hexosaminidase alpha-subunit mutation originally identified in a Puerto Rican patient. Biochem Biophys Res Commun. 1988;156(2):1015–1019. doi: 10.1016/S0006-291X(88)80945-8
  84. Taniike M, Yamanaka S, Proia RL, et al. Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay–Sachs disease. Acta Neuropath. 1995;89:296–304. doi: 10.1007/BF00309622
  85. Triggs-Raine BL, Mules EH, Kaback MM, et al. A pseudodeficiency allele common in non-Jewish Tay–Sachs carriers: implication for carrier screening. Am J Hum Genet. 1992;51(4):793–801.
  86. Vu M, Li R, Baskfield A, et al. Neural stem cells for disease modeling and evaluation of therapeutics for Tay–Sachs disease. Orphanet J Rare Dis. 2018;13(1):152. doi: 10.1186/s13023-018-0886-3
  87. Wakamatusi N, Kobayashi H, Miyatake T, Tsuji S. A novel exon mutation in the human beta-hexosaminidase beta subunit gene affects 3-prime splice site selection. J Biol Chem. 1992;267(4): 2406–2413. doi: 10.1016/S0021-9258(18)45894-2
  88. Wang ZH, Zeng B, Shibuya H, et al. Isolation and characterization of the normal canine beta-galactosidase gene and its mutation in a dog model of GM1-gangliosidosis. J Inherit Metab Dis. 2000;23(6):593–606. doi: 10.1023/A:1005630013448
  89. Xie B, Wang W, Mahuran D. J. A cys138-to-arg substitution in the G-M2 activator protein is associated with the AB variant form of G-M2 gangliosidosis. Am J Hum Genet. 1992;50(5):1046–1052.
  90. Xie B, Kennedy JL, McInnes B, et al. Identification of a processed pseudogene related to the functional gene encoding the G-M2 activator protein: localization of the pseudogene to human chromosome 3 and the functional gene to human chromosome 5. Genomics. 1992;14(3):796–798. doi: 10.1016/S0888-7543(05)80190-9
  91. Yamaguchi A, Katsuyama K, Nagahama K, et al. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses. J Clin Invest. 2004;113(2):200–208. doi: 10.1172/JCI200419639
  92. Yoshida K, Oshima A, Shimmoto M, et al. Human beta-galactosidase gene mutations in G(M1)-gangliosidosis: a common mutation amoung Japanese adult/chronic cases. Am J Hum Genet. 1991;49(2):435–442.
  93. Zlotogora J, Bach G. The possibility of a selection process in the Ashkenazi Jewish population. Am J Hum Genet. 2003;73(2):438–440. doi: 10.1086/377008

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies