Lysosomal storage diseases. Sphingolipidoses – leukodystrophy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Epidemiological, clinical, biochemical and molecular-genetic characteristics of lysosomal leukodystrophies are presented, which include metachromatic leukodystrophy, globoid cell leukodystrophy, or Krabbe disease, combined saposin and multiple sulfatase deficiency. The pathogenesis of metachromatic and globoid cell leukodystrophy is based on hereditary deficiency of two lysosomal enzymes — arylsulfatase A and galactocerebrosidase, accompanied by excessive accumulation of galactosphingosulfatides and galactosylceramide, respectively. The consequence of this is demyelination of the central and peripheral nervous system and damage to the white matter of the brain. Experimental models show effectiveness of pathogenetic approaches, such as hematopoietic stem cell transplantation and gene therapy, only if treatment is started before the development of severe neurological anomalies. In this regard, neonatal screening methods for these two forms of leukodystrophy are being developed, which have been particularly successful in the early diagnosis of Krabbe disease. For each of the two leukodystrophies (metachromatic and globoid cell), rare genetic variants have been described due to the absence of activator proteins for arylsulfatase A and galactocerebrosidase (saposins B and C), respectively, due to specific mutations in the gene of the precursor of saposins, prosaposin (PSPA). Mutations in the PSPA gene resulting in the absence of all four saposins (A, D, C and D) are the cause of combined saposin deficiency, characterized by the development of severe neurological disorders soon after birth and death before the age of 1 year. The pathogenesis of multiple sulfatase deficiency is based on the accumulation of sulfatides, sulfated glycosaminoglycans, sphingolipids, and steroid sulfates, caused by inactivating mutations in the SUMF1 gene of the sulfatase-modifying factor 1 involved in the biosynthesis of all sulfatases. The disease is characterized by a combined manifestation of metachromatic leukodystrophy and mucopolysaccharidosis in combination with severe neurological disorders, mental retardation, sensorineural hearing loss and ichthyosis. Clinical guidelines for the diagnosis, management and therapy of combined saposin and multiple sulfatase deficiency have not yet been developed. The article presents a description of a clinical case of Krabbe disease in a child observed in the medical genetic center of St. Petersburg.

Full Text

Restricted Access

About the authors

Victoria N. Gorbunova

Saint Petersburg State Pediatric Medical University, Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: vngor@mail.ru

PhD, Professor, Department of Medical Genetics

Russian Federation, Saint Petersburg

Natalia V. Buchinskaia

Saint Petersburg State Pediatric Medical University; Saint Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: nbuchinskaia@gmail.com
ORCID iD: 0000-0002-2335-3023
SPIN-code: 4820-4246

MD, PhD pediatrician, Assistant at the Department of Hospital Pediatrics; geneticist, Consulting Department

Russian Federation, Saint Petersburg; Saint Petersburg

Anastasia O. Vechkasova

Saint Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: vechkasova.nastia@mail.ru
ORCID iD: 0009-0004-8775-9630
SPIN-code: 2642-3514

General Practitioner, Geneticist, Consulting Department

Russian Federation, Saint Petersburg

Varvara S. Kruglova

Saint Petersburg State Medical Diagnostic Center (Genetic medical center)

Email: varvara-kruglova@mail.ru
ORCID iD: 0009-0008-2648-3772

Geneticist, Consulting Department

Russian Federation, Saint Petersburg

References

  1. Gorbunova VN. Lysosomal storage diseases. Sphingolipidoses — gangliosidoses. Pediatrician (St. Petersburg). 2023;14(4): 93–111. EDN: RCEJRI doi: 10.17816/PED14493-111
  2. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases: mucopolysaccharidosis type I and II. Pediatrician (St. Petersburg). 2021;12(3):69–83. EDN: QPKGRK doi: 10.17816/PED12369-83
  3. Gorbunova VN, Buchinskaya NV. Lysosomal storage diseases. Mucopolysaccharidosis type III, Sanfilippo syndrome. Pediatrician (St. Petersburg). 2021;12(4):69–82. EDN: RNUPLG doi: 10.17816/PED12469-81
  4. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Mucopolysaccharidosis types IV, VI, and VII — Morquio, Maroto–Lamy and Sly syndrome. Pediatrician (St. Petersburg). 2022;12(6):107–125. EDN: DAIBKU doi: 10.17816/PED126107-125
  5. Gorbunova VN, Buchinskaia NV, Janus GA, Kostik MM. Lysosomal storage diseases. Sphingolipidoses — Fabry, Gaucher and Farber diseases. Pediatrician (St. Petersburg). 2022;13(2):61–88. EDN: GCZIQQ doi: 10.17816/PED13261-88
  6. Gorbunova VN, Buchinskaia NV. Lysosomal storage diseases. Sphingolipidoses — sphingomyelin lipidosis, or Niemann–Pick disease, Wolman disease. Pediatrician (St. Petersburg). 2022;13(4):5–27. EDN: EWBFUJ doi: 10.17816/PED1345-27
  7. Gorbunova VN, Buchinskaia NV, Zakharova EY. Clinical characteristics and epidemiology of lysosomal storage diseases. Medical Genetics. 2022;21(6):3–15. EDN: WFARHF doi: 10.25557/2073-7998.2022.06.3-15
  8. Neurology. National guide. Vol 1. Moscow: GEOTAR-Media; 2010. P. 872–873. (In Russ.)
  9. Amadi IM, Agrawal V, Christianson T, et al. Inhibition of endogenous miR-23a/miR-377 in CHO cells enhances difficult-to-express recombinant lysosomal sulfatase activity. Biotechnol Prog. 2020;36(3):e2974. doi: 10.1002/btpr.2974
  10. Austin J, McAfee D, Armstrong D, et al. Abnormal sulphatase activities in two human diseases (metachromatic leukodystrophy and gargoylism). Biochem J. 1964;93(2):15C-17C. doi: 10.1042/bj0930015c
  11. Azuma N, O’Brien JS, Moser HW, Kishimoto Y. Stimulation of acid ceramidase activity by saposin D Arch Biochem Biophys. 1994;311(2):354–357. doi: 10.1006/abbi.1994.1248
  12. Bar-Am I, Avivi L, Horowitz M. Assignment of the human prosaposin gene (PSAP) to 10q22.1 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1996;72(4):316–318. doi: 10.1159/000134212
  13. Bayever E, Ladisch S, Philippart M, et al. Bone-marrow transplantation for metachromatic leukodystrophy. Lancet. 1985;2(8453): 471–473. doi: 10.1016/s0140-6736(85)90402-7
  14. Beerepoot S, Nierkens S, Boelens JJ, et al. Peripheral neuropathy in metachromatic leukodystrophy: current status and future perspective. Orphanet J Rare Dis. 2019;14(1):240. doi: 10.1186/s13023-019-1220-4
  15. Borges FM, Costa MJGD, Carneiro ZA, Lourenço CM. Metachromatic leukodystrophy: pediatric presentation and the challenges of early diagnosis. Rev Assoc Med Bras (1992). 2020;66(10):1344–1350. doi: 10.1590/1806-9282.66.10.1344
  16. Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett. 2021;752:135841. doi: 10.1016/j.neulet.2021.135841
  17. Bradbury AM, Bagel JH, Nguyen D, et al. Krabbe disease successfully treated via monotherapy of intrathecal gene therapy. J Clin Invest. 2020;130(9):4906–4920. doi: 10.1172/JCI133953
  18. Biffi A, Cesani M, Fumagalli F, et al. Metachromatic leukodystrophy-mutation analysis provides further evidence of genotype-phenotype correlation. Clin Genet. 2008;74(4):349–357. doi: 10.1111/j.1399-0004.2008.01058.x
  19. Blanco-Aguirre ME, Kofman-Alfaro SH, Rivera-Vega MR, et al. Unusual clinical presentation in two cases of multiple sulfatase deficiency. Pediat Derm. 2001;18(5):388–392. doi: 10.1046/j.1525-1470.2001.01959.x
  20. Bonkowsky JL, Nelson C, Kingston JL, et al. The burden of inherited leukodystrophies in children. Neurology. 2010;75(8):718–725. doi: 10.1212/WNL.0b013e3181eee46b
  21. Cannizzaro LA, Chen YQ, Rafi MA, Wenger DA. Regional mapping of the human galactocerebrosidase gene (GALC) to 14q31 by in situ hybridization. Cytogenet Cell Genet. 1994;66(4):244–245. doi: 10.1159/000133703
  22. Capucchio MT, Prunotto M, Lotti D, et al. Krabbe’s disease in two West Highland White terriers. Clin Neuropathol. 2008;27(5):295–301. doi: 10.5414/npp27295
  23. Cappuccio G, Alagia M, Brunetti-Pierri N. A systematic cross-sectional survey of multiple sulfatase deficiency. Mol Genet Metab. 2020;130(4):283–288. doi: 10.1016/j.ymgme.2020.06.005
  24. Chabas A, Castellvi S, Bayes M, et al. Frequency of the arylsulfatase A pceudodeficiency allele in Spanish population. Clin Genet. 1993;44(6):320–323. doi: 10.1111/j.1399-0004.1993.tb03908.x
  25. Chen YQ, Rafi MA, de Gala G, Wenger DA. Cloning and expression of cDNA encoding human galactocerebrosidase, the enzyme deficient in globoid cell leukodystrophy. Hum Molec Genet. 1993;2(11): 1841–1845. doi: 10.1093/hmg/2.11.1841
  26. Chen YQ, Wenger DA. Galactocerebrosidase from human urine: purification and partial characterization. Biochim Biophys Acta. 1993;1170(1):53–61. doi: 10.1016/0005-2760(93)90175-9
  27. Christomanou H, Chabas A, Pampols T, Guardiola A. Activator protein deficient Gaucher’s disease: a second patient with the newly identified lipid storage disorder. Klin Wochenschr. 1989;67(19): 999–1003. doi: 10.1007/BF01716064
  28. Cosma MP, Pepe S, Annunziata I, et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 2003;113(4):445–456. doi: 10.1016/S0092-8674(03)00348-9
  29. Cosma MP, Pepe S, Parenti G, et al. Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Hum Mutat. 2004;23(6):576–581. doi: 10.1002/humu.20040
  30. De Gasperi R, Sosa MAG, Sartorato EL, et al. Molecular heterogeneity of late-onset forms of globoid-cell leukodystrophy. Am J Hum Genet. 1996;59(6):1233–1242.
  31. DeLuca C, Brown JA, Shows TB. Lysosomal arylsulfatase deficiencies in humans: chromosome assignment arylsulfatase A and B. Proc Nat Acad Sci. 1979;76(4):1957–1961. doi: 10.1073/pnas.76.4.1957
  32. Dierks T, Schmidt B, Borissenko LV, et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C-alpha-formylglycine generating enzyme. Cell. 2003;113(4): 435–444. doi: 10.1016/s0092-8674(03)00347-7
  33. Escolar ML, Poe MD, Provenzale JM, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New Eng J Med. 2005;352(20):2069–2081. doi: 10.1056/NEJMoa042604
  34. Fedde K, Horwitz AL. Complementation of multiple sulfatase deficiency in somatic cell hybrids. Am J Hum Genet. 1984;36(3): 623–633.
  35. Fenu S, Castellotti B, Farina L, et al. B deficiency as a cause of adult-onset metachromatic leukodystrophy. Neurology. 2019;93(7):310–312. doi: 10.1212/WNL.0000000000007951
  36. Fiumara A, Barone R, Arena A, et al. Krabbe leukodystrophy in a selected population with high rate of late onset forms: longer survival linked to c.121G-A(p.gly41ser) mutation. Clin Genet. 2011;80(5): 452–458. doi: 10.1111/j.1399-0004.2010.01572.x
  37. Fiumara A, Pavone L, Siciliano L, et al. Late-onset globoid cell leucodystrophy: report on 7 new patients. Child’s Nerv Syst. 1990;6(4):194–197. doi: 10.1007/BF01850970
  38. Fletcher TF, Kurtz HJ. Animal model: globoid cell leukodystrophy in the dog. Am J Pathol. 1972;66(2):375–378.
  39. Fujita N, Suzuki K, Vanier MT, et al. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum Mol Genet. 1996;5(6):711–725. doi: 10.1093/hmg/5.6.711
  40. Gieselmann V, Polten A, Kreysing J, von Figura K. Arylsulfatase A pceudodeficiency: loss of polyadenylylation signal and N-glycosylation site. Proc Nat Acad Sci. 1989;86(23):9436–9440. doi: 10.1073/pnas.86.23.9436
  41. Gieselmann V, Zlotogora J, Harris A, et al. Molecular genetics of metachromatic leukodystrophy. Hum Mutat. 1994;4: 233–242. doi: 10.1002/humu.1380040402
  42. Guenzel AJ, Turgeon CT, Nickander KK, et al. The critical role of psychosine in screening, diagnosis, and monitoring of Krabbe disease. Genet Med. 2020;22(6):1108–1118. doi: 10.1038/s41436-020-0764-y
  43. Harzer K, Paton BC, Poulos A, et al. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: biochemical signs of combined sphingolipidoses. Europ J Pediatr. 1989;149(1):31–39. doi: 10.1007/BF02024331
  44. Hawkins-Salsbury JA, Parameswar AR, Jiang X, et al. Psychosine, the cytotoxic sphingolipid that accumulates in globoid cell leukodystrophy, alters membrane architecture. J Lipid Res. 2013;54(12):3303–3311. doi: 10.1194/jlr.M039610
  45. Heinisch U, Zlotogora J, Kafert S, Gieselmann V. Multiple mutations are responsible for the high frequency of metachromatic leukodystrophy in a small geographic area. Am J Hum Genet. 1995;56(1):51–57.
  46. Herz B, Bach G. Arylsulfatase A in pceudodeficiency. Hum Genet. 1984;66(2–3):147–150. doi: 10.1007/BF00286589
  47. Hess B, Saftig P, Hartmann D, et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Nat Acad Sci. 1996;93(25):14821–14826. doi: 10.1073/pnas.93.25.14821
  48. Hiraiwa M, Soeda S, Kishimoto Y, O’Brien JS. Binding and transport of gangliosides by prosaposin. Proc Nat Acad Sci. 1992;89(23):11254–11258. doi: 10.1073/pnas.89.23.11254
  49. Hohenschutz C, Eich P, Friedl W, et al. Pceudodeficiency of arylsulfatase A: a ommon genetic polymorphism with possible disease implications. Hum Genet. 1989;82(1):45–48. doi: 10.1007/BF00288270
  50. Holdschmidt H, Sandhoff K, Kwon HY, et al. Sulfatide activator protein: alternative splicing that generates three mRNA and a newly found mutation responsible for a clinical disease. J Biol Chem. 1991;266:7556–7560.
  51. Holve S, Hu D, McCandless SE. Metachromatic leukodystrophy in the Navajo: fallout of the American-Indian Wars of the nineteenth century. Am J Med Genet. 2001;101(3):203–208. doi: 10.1002/ajmg.1362
  52. Hoogerbrugge PM, Poorthuis BJHM, Romme AE, et al. Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affectd twitcher mouse. J Clin Invest. 1988;81(6):1790–1794. doi: 10.1172/JCI113521
  53. Hulkova H, Cervenkova M, Ledvinova J, et al. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Molec Genet. 2001;10(9):927–940. doi: 10.1093/hmg/10.9.927
  54. Juárez-Osuna JA, Mendoza-Ruvalcaba SC, Porras-Dorantes A, et al. Arylsulfatase A pseudodeficiency in Mexico: Enzymatic activity and haplotype analysis. Mol Genet Genomic Med. 2020;8(8):e1305. doi: 10.1002/mgg3.1305
  55. Kaback MM, Howell RR. Infantile metachromatic leukodystrophy: heterozygote detection in skin fibroblast and possible applications to intrauterine diagnosis. New Eng J Med. 1970;282(24):1336–1340. doi: 10.1056/NEJM197006112822403
  56. Kang SJ, Cresswell P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nature Immun. 2004;5(2):175–181. doi: 10.1038/ni1034
  57. Kappler J, Leinekugel P, Conzelmann E, et al. Genotype-phenotype relationship in various degrees of arylsulfatase A deficiency. Hum Genet. 1991;86(5):463–470. doi: 10.1007/BF00194634
  58. Kobayashi T, Yamanaka T, Jacobs JM, et al. The twitcher mouse: an enzymatically authentic model of human globoid cell leikodystrophy (Krabbe disease). Brain Res. 1980;202(2):479–483. doi: 10.1016/0006-8993(80)90159-6
  59. Kohn H, Manowitz P, Miller M, Kling A. Neuropsychological deficits in obligatory heterozygotes for metachromatic leukodystrophy. Hum Genet. 1988;79(1):8–12. doi: 10.1007/BF00291701
  60. Kolnikova M, Jungova P, Skopkova M, et al. Late infantile metachromatic leukodystrophy due to novel pathogenic variants in the PSAP Gene. J Mol Neurosci. 2019;67(4):559–563. doi: 10.1007/s12031-019-1259-7
  61. Kretz KA, Carson GS, Morimoto S, et al. Characterization of a mutation in a family with saposin B deficiency: a glycosylation site defect. Proc Nat Acad Sci. 1990;87(7):2541–2544. doi: 10.1073/pnas.87.7.2541
  62. Kreysing J, von Figura K, Gieselmann V. Structure of the arylsulfatase A gene. Europ J Biochem. 1990;191(3):627–631. doi: 10.1111/j.1432-1033.1990.tb19167.x
  63. Krivit W, Shapiro E, Kennedy W. et al. Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. New Eng J Med. 1990;322(1):28–32. doi: 10.1056/NEJM199001043220106
  64. Krivit W, Shapiro EG, Peters C, et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. New Eng J Med. 1998;338(16):1119–1126. doi: 10.1056/NEJM199804163381605
  65. Krieg SI, Krägeloh-Mann I, Groeschel S, et al. Natural history of Krabbe disease — a nationwide study in Germany using clinical and MRI data. Orphanet J Rare Dis. 2020;15(1):243. doi: 10.1186/s13023-020-01489-3
  66. Kuchar L, Ledvinova J, Hrebicek M, et al. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet. 2009;149A(4):613–621. doi: 10.1002/ajmg.a.32712
  67. Loonen MCB, Van Diggilen OP, Janse HC, et al. Late-onset globoid cell leucodystrophy (Krabbe’s disease): clinical and genetic delineation of two forms and their relation to the early-infantile form. Neuropediatrics. 1985;16:137–142. doi: 10.1055/s-2008-1052558
  68. Lugowska A, Berger J, Tylki-Szymanska A, et al. High prevalence of I179S mutation in patients with late-onset metachromatic leukodystrophy. Clin Genet. 2002;61(5):389–390. doi: 10.1034/j.1399-0004.2002.610514.x
  69. Lukatela G, Krauss N, Theis K, et al. Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry. 1998;37(11):3654–3664. doi: 10.1021/bi9714924
  70. Luzi P, Rafi MA, Wenger DA. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum Molec Genet. 1995;4(12):2335–2338. doi: 10.1093/hmg/4.12.2335
  71. Luzi P, Rafi MA, Wenger DA. Structure and organization of the human galactocerebrosidase (GALC) gene. Genomics. 1995;26(2):407–409. doi: 10.1016/0888-7543(95)80230-j
  72. Lyon G, Hargberg B, Evrard P, et al. Symptomatology of the late onset Krabbe’s leukodystrophy: the European experience. Dev Neurosci. 1991;13(4–5):240–244. doi: 10.1159/000112167
  73. Madsen AMH, Wibrand F, Lund AM, et al. Genotype and phenotype classification of 29 patients affected by Krabbe disease. JIMD Rep. 2019;46(1):35–45. doi: 10.1002/jmd2.12007
  74. Matsuda J, Kido M, Tadano-Aritomi K, et al. Mutation in saposin D domain of sphingolipid activator protein gene causes urinary system defects and cerebellar Purkinje cell degeneration with accumulation of hydroxy fatty acid-containing ceramide in mouse. Hum Molec Genet. 2004;13(21):2709–2723. doi: 10.1093/hmg/ddh281
  75. Matsuda J, Vanier MT, Saito Y, et al. Dramatic phenotypic improvement during pregnancy in a genetic leukodystrophy: estrogen appears to be a critical factor. Hum Molec Genet. 2001;10(23): 2709–2715. doi: 10.1093/hmg/10.23.2709
  76. Matsuda J, Vanier M. T, Saito Y, et al. A mutation in the saposin A domain of the sphingolipid activator protein (prosaposin) gene results in a late-onset, chronic form of globoid cell leukodystrophy in the mouse. Hum Molec Genet. 2001;10(11):1191–1199. doi: 10.1093/hmg/10.11.1191
  77. Matzner U, Herbst E, Hedayati KK, et al. Enzyme replacement improves nervous system pathology and function in a mouse model for metachromatic leukodystrophy. Hum Molec Genet. 2005;14(9): 1139–1152. doi: 10.1093/hmg/ddi126
  78. Morimoto S, Martin BM, Kishimoto Y, O’Brien J.S. Saposin D: a sphingomyelinase activator. Biochem Biophys Res Commun. 1988;156(1):403–410. doi: 10.1016/s0006-291x(88)80855-6
  79. Morimoto S, Martin BM, Yamomoto Y, et al. Saposin A: second cerebrosidase activator protein. Proc Nat Acad Sci. 1989;86(9): 3389–3393. doi: 10.1073/pnas.86.9.3389
  80. Narahara K, Takahashi Y, Murakami M. et al. Terminal 22q deletion associated with a partial deficiency of arylsulfatase A. J Med Genet. 1992;29(6):432–433. doi: 10.1136/jmg.29.6.432
  81. O’Brien JS, Carson GS, Seo HS, et al. Identification of prosaposin as a neurotrophic factor. Proc Natl Acad Sci. 1994;91(20): 9593–9596. doi: 10.1073/pnas.91.20.9593
  82. O’Brien JS, Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 1991;5(3):301–308. doi: 10.1096/fasebj.5.3.2001789
  83. Oji Y, Hatano T, Ueno SI, et al. Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. Brain. 2020;143(4):1190–1205. doi: 10.1093/brain/awaa064
  84. Polten A, Fluharty AL, Fluharty CB, et al. Molecular basis of different forms of metachromatic leukodystrophy. New Eng J Med. 1991;324(1):18–22. doi: 10.1056/NEJM199101033240104
  85. Propping P, Friedl W, Huschka M, et al. The influence of low arylsulfatase A activity on neuropsychiatric morbidity: large-scale screening in patients. Hum Genet. 1986;74(3):244–248. doi: 10.1007/BF00282542
  86. Rafi MA, Luzi P, Chen YQ, Wenger DA. A large deletion together with a point mutation in the GALC gene is a common mutant allele in patients with infantile Krabbe disease. Hum Molec Genet. 1995;4(8):1285–1289. doi: 10.1007/BF00282542
  87. Rauschka H, Colsch B, Baumann N, et al. Late-onset metachromatic leukodystrophy: genotype strongly influences phenotype. Neurology. 2006;67(5):859–863. doi: 10.1212/01.wnl.0000234129.97727.4d
  88. van Rappard DF, Boelens JJ, Wolf NI. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab. 2015;29(2):261–273. doi: 10.1016/j.beem.2014.10.001
  89. Roeser D, Preusser-Kunze A, Schmidt B, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Nat Acad Sci. 2006;103(1):81–86. doi: 10.1073/pnas.0507592102
  90. Rorman EG, Scheinker V, Grabovsky GA. Sructure and evolution of the human prosopsin chromosomal gene. Genomics. 1992;13(2):312–318. doi: 10.1016/0888-7543(92)90247-p
  91. Rosenberg JB, Kaminsky SM, Aubourg P, et al. Gene therapy for metachromatic leukodystrophy. J Neurosci Res. 2016;94(11): 1169–1179. doi: 10.1002/jnr.23792
  92. Sakai N, Inui K, Fujii N, et al. Krabbe disease: isolation and characterization of the full-length cDNA for human galactocerebrosidase. Biochem Biophys Res Commun. 1994;198(2):485–491. doi: 10.1006/bbrc.1994.1071
  93. Shaimardanova AA, Chulpanova DS, Solovyeva VV, et al. Metachromatic leukodystrophy: diagnosis, modeling, and treatment approaches. Front Med (Lausanne). 2020;7:576221. doi: 10.3389/fmed.2020.576221
  94. Schlotawa L, Ennemann EC, Radhakrishnan K, et al. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency. Europ J Hum Genet. 2011;19:253–261. doi: 10.1038/ejhg.2010.219
  95. Schlotawa L, Adang L, De Castro M, Ahrens-Nicklas R. Multiple sulfatase deficiency. 2019. In: GeneReviews® [Internet]. Adam MP, Mirzaa GM, Pagon RA, editors. Seattle (WA): University of Washington; 1993–2023.
  96. Schlotawa L, Preiskorn J, Ahrens-Nicklas R, et al. A systematic review and meta-analysis of published cases reveals the natural disease history in multiple sulfatase deficiency. J Inherit Metab Dis. 2020;43(6):1288–1297. doi: 10.1002/jimd.12282
  97. Schoenmakers DH, Beerepoot S, Krägeloh-Mann I, et al. Recognizing early MRI signs (or their absence) is crucial in diagnosing metachromatic leukodystrophy. Ann Clin Transl Neurol. 2022;9(12):1999–2009. doi: 10.1002/acn3.51692
  98. Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Molec Genet. 2008;17(1):119–129. doi: 10.1093/hmg/ddm289
  99. Settembre C, Annunziata I, Spampanato C, Et al. Systemic inflammation and neurodegeneration in a mouse model of multiple sulfatase deficiency. Proc Nat Acad Sci. 2007;(104):4506–4511. doi: 10.1073/pnas.0700382104
  100. Spiegel R, Bach G, Sury V, et al. A mutation in the saposin A coding region of the prosaposin gene in an infant presenting as Krabbe disease: report of saposin A deficiency in humans. Molec Genet Metab. 2005;84(2):160–166. doi: 10.1016/j.ymgme.2004.10.004
  101. Stein C, Gieselmann V, Kreysing J, et al. Clonning and exprssion of human arylsulfatase. J Biol Chem. 1989;264(2):1252–1259.
  102. Stevens RL, Fluharty AL, Kihara H, et al. Cerebroside sulfatase activator deficiency induced metachromatic leukodystrophy. Am J Hum Genet. 1981;33(6):900–906.
  103. Sun Y, Ran H, Zamzow M, et al. Specific saposin C deficiency: CNS impairment and acid beta-glucosidase effects in the mouse. Hum Molec Genet. 2010;19(4):634–647. doi: 10.1093/hmg/ddp531
  104. Sweet H.O. Twitcher (twi) is on chromosome 12. Mouse News Letter. 1986;75:30.
  105. Tappino B, Biancheri R, Mort M, et al. Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Hum Mutat. 2010;31:E1894–1914. doi: 10.1002/humu.21367
  106. Tohyama J, Vanier MT, Suzuki K, et al. Paradoxical influence of acid beta-galactosidase gene dosage on phenotype of the twitcher mouse (genetic galactosylceramidase deficiency). Hum Molec Genet. 2000;9(11):1699–1707. doi: 10.1093/hmg/9.11.1699
  107. Turgeon CT, Orsini JJ, Sanders KA, et al. Measurement of psychosine in dried blood spots — a possible improvement to newborn screening programs for Krabbe disease. J Inherit Metab Dis. 2015;38(5):923–929. doi: 10.1007/s10545-015-9822-z
  108. Tylki-Szymanska A, Czartoryska B, Vanier MT, et al. Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin Genet. 2007;72(6):538–542. doi: 10.1111/j.1399-0004.2007.00899.x
  109. Weinstock NI, Shin D, Dhimal N, et al. Macrophages expressing galc improve peripheral krabbe disease by a mechanism independent of cross-correction. Neuron. 2020;107(1):65–81.e9. doi: 10.1016/j.neuron.2020.03.031
  110. Wenger DA, Rafi MA, Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): diagnostic and clinical implications. Hum Mutat. 1997;10(4):268–279. doi: 10.1002/(SICI)1098-1004(1997)10:4<268::AID-HUMU2>3.0.CO;2-D
  111. Wenger DA, Zhang XL, Rafi M, DeGala G. Molecular basis for SAP-1 (sulfatide G(M1) activator protein) deficiency. Am J Hum Genet. 1989;45(suppl.):A13.
  112. Winau F, Schwierzeck V, Hurwitz R, et al. Saposin C is required for lipid presentation by human CD1b. Nature Immun. 2004;5(2): 169–174. doi: 10.1038/ni1035
  113. Wolf NI, Breur M, Plug B, et al. Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann Clin Transl Neurol. 2020;7(2):169–180. doi: 10.1002/acn3.50975
  114. Xu C, Saka, N, Taniike M, et al. Six novel mutations detected in the GALC gene in 17 Japanese patients with Krabbe disease, and new genotype-phenotype correlation. J Hum Genet. 2006;51(6):548–554. doi: 10.1007/s10038-006-0396-3
  115. Yuan W, Qi X, Tsang P, et al. Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules. Proc Nat Acad Sci. 2007;104(13):5551–5556. doi: 10.1073/pnas.0700617104
  116. Zhang XL, Rafi MA, DeGala G, Wenger DA. Insertion in the mRNA of a metachromatic leukodystrophy patient with sphingolipid activator protein-1 deficiency. Proc Nat Acad Sci USA. 1990;87(4): 1426–1430. doi: 10.1073/pnas.87.4.1426
  117. Zlotogora J, Bach G, Barak Y, Elian E. Metachromatic leukodystrophy in the habbanite Jews: high frequency in a genetic isolate and screening for heterozygotes. Am J Hum Genet. 1980;32(5):663–669.
  118. Zlotogora J, Regev R, Zeigler M, et al. Krabbe disease: increased incidence in a highly inbred community. Am J Med Genet. 1985;21:765–770. doi: 10.1002/ajmg.1320210420
  119. Zlotogora J, Chakraborty C, Knowlton RJ, Wenger DA. Krabbe disease locus mapped to chromosome 14 by genetic linkage. Am J Hum Genet. 1990;47(1):37–44.
  120. Zlotogora J, Gieselman V, von Figura K, et al. Late infantile metachromatic leukodystrophy in Israel. Biomed Pharmacother. 1994;48):347–350. doi: 10.1016/0753-3322(94)90049-3
  121. Zlotogora J, Bach G, Bösenberg C, et al. Molecular basis of late infantile metachromatic leukodystrophy in the Habbanite Jews. Hum Mutat. 1995;5(2):137–143. doi: 10.1002/humu.1380050207

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies