The impact of the phase state of dihydroquercetin on the pharmacological and technological properties of lozenges


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Dihydroquercetin (DHQ) has anti-inflammatory and antibacterial activities, which allows this compound to be considered as a promising candidate for designing lozenges in the treatment of the nosological entity sore throat. Objective: to develop the optimal composition of lozenges based on DHQ in terms of its phase state. Material and methods. The investigation object was lozenges based on the amorphous modifications of DHQ. The composition of the tablets was optimized by the following indicators: disintegration, crushing strength, abrasion resistance, and dissolution. Results. The empirically selected optimal weight of the lozenges was 300 mg with a ratio of the components: DHQ, sucrose, crospovidone, calcium stearate, and menthol (7:87:3:1:2) (wt%). There was a statistically significant difference in disintegration time between the lozenges with the above described composition based on crystalline and amorphous formulations (7.1 and 36.4 min, respectively). The dissolution profiles of the tablets based on two DHQ modifications were not equivalent (difference coefficient, 23.0%; similarity factor, 42.8%), while a more prolonged release mode was noted for tablets based on the amorphous formulation of DHQ. Conclusion. The optimal composition of the lozenges comprised the amorphous formulation of DHQ, sucrose, crospovidone, calcium stearate, and menthol in a ratio of 20:265:8:2:5 (mg). The crushing strength, abrasion resistance, and disintegration met the requirements of the State Pharmacy, 14th edition (RF SP-14). The designed lozenges are a promising target for further investigations.

Full Text

Restricted Access

About the authors

Roman Petrovich Terekhov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: r.p.terekhov@yandex.ru

Maria Nikolaevna Anurova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: amn25@yandex.ru

Irina Anatolyevna Selivanova

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: irinaselivanova@yandex.ru

References

  1. Мизина П.Г., Гуленков А.С. Таблетки для рассасывания: достижения и перспективы. Вопросы биологической, медицинской и фармацевтической химии, 2018; 21 (2): 3-11. https://doi.org/1029296/25877313-2018-02-01
  2. Регистр лекарственных средств. Справочник лекарств. [Электронное издание]. Режим доступа: https://www.rlsnet.ru
  3. Ilyasov I.R., Beloborodov V.L., Selivanova I.A. Three ABTSh radical cation-based approaches for the evaluation of antioxidant activity: fast- and slow-reacting antioxidant behavior. Chemical Papers. 2018; 72 (8): 1917-25. https://doi.org/10.1007/s11696-018-0415-9
  4. Тюкавкина Н.А., Селиванова И.А., Терехов Р.П. Современные тенденции создания лекарственных средств на основе флавоноидов. Фенольные соединения: свойства, активность, инновации. Сборник научных статей по материалам X Международного симпозиума. М.: PRESS-BOOK.RU, 2018; 526-32.
  5. Плотников М.Б., Тюкавкина Н.А., Плотникова Т.М. Лекарственные препараты на основе диквертина. Томск: изд. Томского университета, 2005: 228.
  6. Terekhov R.P., Selivanova I.A., Tyukavkina N.A., Shylov G.V., Utenishev A.N., Porozov Yu.B. Taxifolin Tubes: Crystal Engineering and Characteristics. ActaCrystallographica Section B: Structural Science, Crystal Engineering and Materials. 2019; 75 (2): 175-82. https://doi.org/10.1107/S2052520619000969
  7. Selivanova I.A., Tiukavkina N.A., Kabluchko T.G., Gorkavenko F.V. Polymorphism of Dihydroquercetin. Oxidative Stress Reduction, Redox Homeostasis and Antioxidants. 14-th ISANH Congress. Paris:InternationalSociety of Antioxidants, 2014: 181.
  8. Селиванова И.А., Тюкавкина Н.А., Терехов Р.П., Фенин А.А. Стереоизометрия дигидрокверцетина в формате молекулярного дизайна. Сборник материалов IV Всероссийской научно-практической конференции с международным участием «Инновации в здоровье нации». СПб.: изд. СПХФА;2016: 563-567.
  9. Terekhov R., Selivanova I. Fractal Aggregation of Dihydroquercetin after Lyophilization. Journal of Pharmaceutical Innovation. 2018; 13 (4): 313-20. https://doi.org/10.1007/ s12247-018-9322-4
  10. Терехов Р.П., Селиванова И.А., Жевлакова А.К., Порозов Ю.Б., Дзубан А.В. Анализ физических модификаций дигидрокверцетина in vitro и in silico. Биомедицинская химия. 2019; 65 (2): 152-8. https://doi.org/10.18097/PBMC20196502152
  11. Терехов Р.П., Селиванова И.А., Анурова М.Н. Анализ полиморфных модификаций дигидрокверцетина. Фармация. Специальный выпуск. Сборник материалов конференции «Молодая фармация - потенциал будущего», 2018: 660-3.
  12. Государственная фармакопея РФ XIV изд. [Электронное издание]. Режим доступа: http://femb.ru/femb/ pharmacopea.php
  13. Биофармация. Под ред. В.В. Гладышева. Днепр: ЧМП «Экономика», 2018: 250.
  14. U.S. Food & Drug Administration [Electronic resource]. Access mode: https://www.fda.gov

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies