Mineral Carriers for Oral Drug Delivery

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Currently, the development of drug delivery systems is one of the priorities of pharmaceutical technology. Objective: The purpose of the work is to review the scientific and technical literature concerning the possibility of using mineral carriers for oral delivery of medicinal substances. Material and methods: To achieve this goal, it was necessary to review the use of mineral carriers for oral drug delivery, as well as the systematization and classification of mineral carriers for the oral drug delivery. Electronic resources such as eLibrary, CyberLeninka, PubMed were used as research materials. Research methods are analysis and generalization. The study covered the scientific literature for the period from 2002 to the present. Results. It has been established that mineral carriers can be used for oral delivery of the following drug groups: nonsteroidal antiinflammatory drugs, antibiotics, hypotensive, antitumor, and antipsychotic drugs. The systematization and classification of mineral carriers for oral delivery of medicinal substances has been carried out. It was established that currently five potential groups of medical clays should be considered as mineral carriers: palygorskite (attapulgite), kaolin, smectite, zeolite, and silicon dioxide. Conclusion. Now, zeolites based on the mineral clinoptilolite are at the stage of study and are promising mineral raw materials for obtaining carriers of medicinal substances. Different types of pores of mineral carriers allow them to adsorb drugs and release them in a more pharmacologically active form. Porous mineral carriers based on montmorillonite clay are used to improve the oral bioavailability of poorly water-soluble medicinal substances by increasing their solubility.

Full Text

Restricted Access

About the authors

Alexander Vasilyevich Bondarev

Regional State Budgetary Healthcare Institution «Shebekino Central District Hospital»

Email: alexbond936@yandex.ru
Candidate of Pharmaceutical Sciences, Head of Pharmacy Russian Federation,

Elena Teodorovna Zhilyakova

BelgorodState National Research University

Email: ezhilyakova@bsu.edu.ru
Doctor of Pharmaceutical Sciences, Professor, Head of the Department of Pharmaceutical Technology Russian Federation,

Natalia Valeryevna Avtina

BelgorodState National Research University

Author for correspondence.
Email: avtina@bsu.edu
Candidate of Pharmaceutical Sciences, Associate Professor, Associate Professor of the Department of Pharmaceutical Technology Russian Federation,

References

  1. Dutta R.C. Drug carriers in pharmaceutical design: promises and progress. Curr. Pharm. Des., 2007. 13 (7): 761-9. doi: 10.2174/138161207780249119.
  2. Verheyen S. Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions. Int. J. Pharm. 2002; 249 (1-2): 45-58. DOI: 10.1016/ s0378-5173(02)00532-x.
  3. База данных медицинских и биологических публикаций [Электронный ресурс]. Национальный центр биотехнологической информации США. 2021. Режим доступа: https://pubmed.ncbi.nlm.nih.gov
  4. Государственный реестр лекарственных средств [Электронный ресурс]. М-во здравоохранения РФ. М., 2021. Режим доступа: http://grls.rosminzdrav.ru
  5. Бондарев А.В., Жилякова Е.Т. Использование сорбционных процессов в технологии систем доставки лекарственных веществ. Фармация и фармакология. 2019; 7 (1): 4-12. doi: 10.19163/2307-9266-2019-7-1-4-12.
  6. Сысуев Б.Б., Плетнева И.В. Современное состояние исследований разработок в области инновационных лекарственных форм и их модификаций. Вестник Волгоградского государственного медицинского университета. 2014; 4 (52): 7-12.
  7. Бондарев А.В., Жилякова Е.Т., Демина Н.Б. и др. Перспективы использования медицинских глин. Разработка и регистрация лекарственных средств. 2019; 8(4): 27-31. doi: 10.33380/2305-2066-2019-8-4-27-31.
  8. Sher P., Insavle G., Porathnam S. et al. Low Density porous carrier drug adsorption and release study by response surface methodology using different solvents. Int J. Pharm. 2007; 331: 72-83. doi: 10.1016/j.ijpharm.2006.09.013.
  9. Song S.W., Hidajat K., Kawi S. Functionalized SAB-15 material as carrier from controlled drug delivery: Influence of surface properties on matrix drug interactions. Langmuir. 2005; 21: 9568-75. doi: 10.1021/la051167e.
  10. Andersson J., Rosenhoim J., Areva S. et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater. 2004; 16: 4160-7. doi: 10.1021/cm0401490.
  11. Charney C., Begu S., Tourne P., Nicole L., Lerner D., Devoisselle J.M. Inclusion of ibuprofen in mesoporous template silica: Drug loading and release property. Eur. J. Pharm. Biopharm. 2003; 57: 533-40. doi: 10.1016/j.ejpb.2003.12.007.
  12. Diab R., Canilho N., Pavel I. et al. Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science., 2017; 249: 346-62. doi: 10.1016/j.cis.2017.04.005.
  13. Jayrajsinh S., Shankar G., Agrawal Y.K. et al. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. Journal of Drug Delivery Science and Technology. 2017; 39: 200-9. doi: 10.1180/0009855013640007.
  14. Ahuja G., Pathak K. Porous Carriers for Controlled/ Modulated Drug Delivery. Indian J. Pharm. Sci. 2009; 71 (6): 599607. doi: 10.4103/0250-474X.59540.
  15. Gupta B., Poudel B.K., Ruttala H.B. et al. Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomater. 2018; 80: 364-77. doi: 10.1016/j.actbio.2018.09.006.
  16. Khatoon N., Chu M.Q., Zhou C.H. Nanoclay-based drug delivery systems and their therapeutic potentials. Journal of Materials Chemistry. 2020; 8 (33): 7335-51. DOI: 10.1039/ d0tb01031f.
  17. Душкин А.В., Гайдуль К.В., Гольдина И.А. и др. Антимикробная активность механохимически синтезированных композитов антибиотиков и наноструктурированного диоксида кремния. Доклады Академии наук. 2012; 443(1): 120-122.
  18. Zhang H., Shahbazi M., Da Silva T.H. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials. 2013; 34 (36): 9216-9. doi: 10.1016/j.biomaterials.2013.08.035.
  19. Lin H.M., Xing R., Wu X. et al. Multifunctional SBA-15 for magnetically oriented and PH targeted delivery of Ibuprofen. Materials Research Innovations. 2013; 17 (6): 360-5. doi: 10.1179/1433075X11Y.0000000068.
  20. Bondarev A., Zhilyakova E., Bondareva N. et al. Classification and Systematics of Medical Clay. Advances in Biological Sciences Research. 2019; 7: 44-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies