Development of a UV spectrophotometric method for quantitative determination of a clopidogrel metabolite suitable for chemical and toxicological analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. In Russia, more than 50% of all diseases and a fifth of all cases of disability are due to coronary heart disease and stroke. According to the recommendations of the Russian Society of Cardiology (RKO) and the European Society of Cardiology, antiplatelet therapy with clopidogrel is included in the standards of treatment of patients with COVID-19. Clopidogrel is a prodrug, with the help of esterases, hydrolysis occurs with the formation of the main (inactive) circulating metabolite - a derivative of carboxylic acid, which accounts for 85% of all metabolites of this drug. According to the information given in the scientific literature over the past 10 years, clopidogrel is of interest from the point of view of chemical and toxicological studies, since this drug very often becomes the "drug of choice" for suicide purposes. Objective: to develop and validate a technique for the quantitative determination of the main metabolite of clopidogrel -clopidogrel carboxylic acid using an affordable and widely implemented chemical-toxicological analysis method of UV spectrophotometry. Material and methods. Objects of research - Clopidogrel carboxylic acid (SLA) substance-powder. The light absorption of solutions in the UV spectrum was measured with the SF-46 spectrophotometer (JSC LOMO, Russia), the spectral measurement range was from 200 to 350 nm. A standard solution of clopidogrel carboxylic acid in 0.1 M hydrochloric acid solution (100 mcg/ml) was used. Results. The optimal wavelength for the quantitative determination of the main metabolite of clopidogrel - clopidogrel carboxylic acid is 278 nm. The calibration graph for the UV spectrophotometric method was described by the equation: A=0.004128C - 0.008667; linearity was observed within the concentrations of clopidogrel carboxylic acid 20.0-200 mcg/ml; LOD and LOQ were, respectively, 1.655 mcg and 5.015 mcg in the sample. Conclusion. The developed method of quantitative determination of the main metabolite of clopidogrel - clopidogrel carboxylic acid using UV spectrophotometric method meets the requirements for methods recommended for use in forensic toxicology, which is confirmed by validation characteristics.

Full Text

Restricted Access

About the authors

L. S Anosova

Donetsk National Medical University named after M. Gorky

Author for correspondence.
Email: apteka-nanya@yandex.ru

I. P Remezova

Pyatigorsk Medical and Pharmaceutical Institute - branch of the Volgograd State Medical University of the Ministry of Health of Russia

Email: i.p.remezova@pmedpharm.ru

A. M Agafonov

Donetsk National Medical University named after M. Gorky

Email: chuh2008@yandex.ru

References

  1. Nijenh V.J. uis et al. Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2020; 382 (18): 1696707. doi: 10.1056/NEJMoa1915152
  2. Zurowska-Wolak M., Owsiak M., Bartus S., Mikos M. The influence of pre-hospital medication administration in ST-elevation myocardial infarction patients on left ventricular ejection fraction and intrahospital death. Postepy Kardiol Interwencyjnej. 2021; 17 (1): 39-45. doi: 10.5114/aic.2021.104766
  3. Pena A., Collet J.P., Hulot J.S. et al. Can we override clopidogrel resistance. Circulation. 2009; 119 (21): 2854-7.
  4. Голухова Е.З., Григорян М.В., Рябинина М.Н. Современные аспекты фармакогенетики клопидогрела и его клиническое значение. Креативная кардиология. 2014; 3: 39-52.
  5. Редькіна Є.А., Ткаченко Н.О., Гладишев В. В. Маркетингові дослідження українського ринку антиагрегантів. Фармацевтичний журнал. 2016; 3-4: 12-5.
  6. Аносова Л.С. Распределение клопидогрела в органах отравленных животных. Фармация. 2021; 70 (6): 31-6. doi: 10.29296/25419218-2021-06-06
  7. Державна Фармакопея України. Державне підприємство «Науково-експертний фармакопейний центр». Доповнення 2. Харків: РІРЕГ, 2008; 608.
  8. Kocabay G., Okçular I., Akkaya V., Güler K. Suicide attempt with clopidogrel. Hum. Exp. Toxicol. 2006; 25 (12): 731-4.
  9. Borderias C.L., Garrapiz L.J., Caballero G. Pulmonary haemorrhage and haemothorax after massive ingestion of clopidogrel as a suicide attempt. Arch. Bronconeumol. 2009; 45 (11): 570-1. DOI: 10.1016/j. arbres.2009.06.009.
  10. Al Asmar R., Zeid F. Acute Hemothorax Causing Hemorrhagic Shock Following Small-bore Thoracocentesis in a Patient on Clopidogrel: A Case Report and Literature Review. Cureus. 2020; 12 (3): e7431. doi: 10.7759/cureus.7431.
  11. Attimarad M. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry. J. Basic Clin. Pharm. 2010; 2 (1): 53-61.
  12. Stolarczyk M., Apola А., Maslanka А. et al. Spectrophotometric method for simultaneous determination of valsartan and substances from the group of statins in binary mixtures. Acta Pharm. 2017; 67 (4): 463-78. doi: 10.1515/acph-2017-0031
  13. Stolarczyk M., Maslanka А., Apola А. et al. Derivative spectrophotometric method for simultaneous determination of zofenopril and fluvastatin in mixtures and pharmaceutical dosageforms. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015; 148: 66-71. doi: 10.1016/j.saa.2015.03.100
  14. Parojcic J., Karljikovic-Rajic K., Duric Z. et al. Development of the second-order derivative UV spectrophotometric method for direct determination of paracetamol in urine intended for biopharmaceutical characterisation of drug products. Biopharm. Drug Dispos. 2003; 24 (7): 309-14. doi: 10.1002/bdd.367.
  15. Duran Meras I., Espinosa Mansilla A., Salinas Lopez F., Rodriguez Gomez M.Comparison of UV derivative-spectrophotometry and partial least-squares (PLS-1) calibration for determination of methotrexate and leucovorin in biological fluids. Anal. and Bioanal. Chem. 2002; 373 (4-5): 251-8. doi: 10.1007/s00216-002-1348-1.
  16. Вергейчик Т.Х., Линникова В.А., Гуськова Г.Б. Химико-токсикологический анализ биологических объектов на метопролол и кветиапин. Изв. Самарского науч. центра Рос. академии наук. 2012; 14 (5 (3)): 700-3.
  17. Tolba M.M., Salim M.M. Derivative Quotient Spectrophotometry and an Eco-Friendly Micellar Chromatographic Approach with Time-Programmed UV-Detection for the Separation of Two Fluoroquinolones and Phenazopyridine. J. Chromatogr. Sci. 2016; 54 (5): 776-89. doi: 10.1093/chromsci/bmw010.
  18. Барам Г.И., Рейхарт Д.В., Гольдберг Е.Д. Новые возможности высокоэффективной жидкостной хроматографии в фармакопейном анализе. Бюллетень экспериментальной биологии и медицины. 2003; 135 (1): 75-9.
  19. Бондар В.С., Аносова Л.С. Високоефективна рідинна хроматографія в аналізі клопідогрелю. Фармацевт. часоп. 2012; 4 (24): 73-8.
  20. Pawaskar P.S. et al. Development of Reverse Phase Liquid Chromatographic Method for Determination of (+)-(S)-(o-Chlorophenyl)-6,7- Dihydrothieno [3,2-c] pyridine-5(4H)-acetic acid,Hydrochloride and Methyl (+/-) - (o- Chloro phenyl)- 4,5-Dihydrothieno[2,3-c] pyridine-6(7H)-acetate, Hydrochloride from Clopidogrel Besylate.Int. J. Pharm. Res. Sch. 2013; 2 (1): 16-23.
  21. Pawaskar P. et al. Development of Normal Phase Liquid Chromatographic Method for determination of Methyl (-) - (R) - (o- chlo-rophenyl) -6, 7- dihyrothieno [3, 2-C] pyridine -5(4H) acetate, hydrogen sulphate from ClopidogrelBesylate.Int. J. Pharm Sci. 2013; 5 (1): 1971-6.
  22. Аносова Л.С. Химико-токсикологическое исследование клопидогрела. COLLECTIVE MONOGRAPH «The modern stage of the development of medical education in Ukraine and EU countries». Medical University of Lublin. Poland. 2021; 1-25. doi: 10.30525/978-9934-26-090-2-1
  23. Бондар В.С., Аносова Л.С., Шовкова З.В. Ідентифікація клопідогрелю та його метаболіту за допомогою методу тонкошарової хроматографії. Укр. мед. альм. 2013; 16 (1): 50-2.
  24. Бондар В.С., Аносова Л.С. Екстракцмно-фотометричне визначення клотдогрелю. Укр. мед. альм. 2012; 15 (5) (додаток): 43-4.
  25. Бондарь В.С., Аносова Л.С., Шовковая З.В. Изолирование клопидогрела и его метаболита из биоматериала. Фармация Казахстана. 2013; 7: 34-7.
  26. Бондарь В.С., Аносова Л.С., Шовковая З.В. Изолирование клопидогрела и его метаболита из биологических жидкостей. Фармация Казахстана. 2013; 9: 59-60.
  27. SOFT/AAFS Forensic Laboratory Guidelines. 2006; 24. [Электронный ресурс]. Available at: http://www.soft-tox.org/files/ Guidelines_2006_Final.pdf. (дата обращения 12.06.2022).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hydrolysis product, the main inactive metabolite of clopidogrel – clopidogrel carboxylic acid

Download (18KB)
3. Fig. 2. UV spectrum of clopidogrel carboxylic acid in 0.1 M hydrochloric acid solution (concentration 100 mcg/ml; l=10 mm)

Download (81KB)
4. Fig. 3. Calibration graph for UV spectrophotometric determination of clopidogrel carboxylic acid (λ=278 nm; l=10 mm)

Download (46KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies