Influence of sorption of polydimethylsiloxane on the determination of its content in tablet mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Excipients with sorption properties are used in pharmacy as carriers, glidants, stabilizers, thickeners. However, their use is limited by potentially incomplete desorption of active pharmaceutical ingredients (API), which can affect quantification of API. Accuracy of determining the content of polydimethylsiloxane (PDMS), which is main component of simethicone, is significantly depends on drug matrix.

Objective: to investigate sorption of PDMS in tablets containing simethicone and magaldrate. Evaluate the contribution of individual components of tablet mixture (TM) to degree of sorption.

Material and methods. TM of different composition were analyzed. The quantitative content of PDMS in TM was determined by gel permeation chromatography with refractometric detector.

Results. The different grades of magaldrate, probably differing in the ratio of amorphous and crystalline phases, exhibit different sorption activity to PDMS. The granulation of magaldrate with hypromelose reduce sorption of PDMS on the antacid. The most significant sorption of PDMS was observed in presence of silicon dioxide (SD). While complete desorption of PDMS did not occur. Direct relationship has been established between the amount of SD and the amount of sorbed PDMS.

Conclusion. We found that the main reason for decrease in degree of transition of PDMS into solution from simethicone and magaldrate TM is sorption of the polymer by antacid and SD. In case of magaldrate, we chose the conditions that allow complete desorption of polymer. While the similar structure of PDMS and SD, covalent and noncovalent interactions leads to partial chemisorption of PDMS and, consequently, its incomplete desorption.

Full Text

Restricted Access

About the authors

Nadezhda Alexsandrovna Obraztsova

JSC "Valenta Pharm"

Author for correspondence.
Email: Nadezhda.Obraztsova@valentapharm.com
ORCID iD: 0000-0002-3239-9613

researcher, PhD in chemistry sciences

Russian Federation, Fabrichnaya Str., 2, Schelkovo, Moscow Region, 141108

Aleksey Alexseevich Samsonov

JSC "Valenta Pharm"

Email: aleksey.samsonov@valentapharm.com
ORCID iD: 0000-0002-3557-3824

chief researcher

Russian Federation, Fabrichnaya Str., 2, Schelkovo, Moscow Region, 141108

Valentin Sergeevich Berezhnoy

JSC "Valenta Pharm"

Email: Valentin.Berezhnoy@valentapharm.com
ORCID iD: 0000-0003-4086-0120

junior researcher

Russian Federation, Fabrichnaya Str., 2, Schelkovo, Moscow Region, 141108

Varvara Nicolaevna Shmeleva

JSC "Valenta Pharm"

Email: Varvara.Shmeleva@valentapharm.com
ORCID iD: 0000-0001-6973-0405

head of research and development

Russian Federation, Fabrichnaya Str., 2, Schelkovo, Moscow Region, 141108

Natalia Alexsandrovna Golubeva

JSC "Valenta Pharm"

Email: natalia.golubeva@valentapharm.com
ORCID iD: 0000-0002-4065-8494

R&D director

Russian Federation, Fabrichnaya Str., 2, Schelkovo, Moscow Region, 141108

References

  1. Гуленков А.С., Мизина П.Г. Cорбция и десорбция жидкого растительного экстракта. Фармация. 2019; 68 (4): 27–31. [Gulenkov A.S., Mizina P.G. Sorption and desorption of liquid plant extract. Farmatsiya (Pharmacy), 2019; 68 (4): 27–31. doi: 10.29296/25419218-2019-04-04 (in Russian)].
  2. Van Eerdenbrugh B., Van Speybroeck M., Mols R., Houthoofd K., Martens J. A., Froyen L., Van den Mooter G. Itraconazole/TPGS/Aerosil®200 solid dispersions: characterization, physical stability and in vivo performance. Eur. J. Pharm. Sci. 2009; 38 (3): 270–8. doi: 10.1016/j.ejps.2009.08.002.
  3. Li X., Peng H., Tian B., Gou J., Yao Q., Tao X., Cai C. Preparation and characterization of azithromycin–Aerosil 200 solid dispersions with enhanced physical stability. Int. J. Pharm. 2015; 486 (1–2): 175–84. doi: 10.1016/j.ijpharm.2015.03.029.
  4. Maji I., Mahajan S., Sriram A., Medtiya P., Vasave R., Khatri D. K., .Singh P. K. Solid self-emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J. Control. Release. 2021; 337: 646–60. doi: 10.1016/j.jconrel.2021.08.013.
  5. McCarthy C. A., Ahern R. J., Devine K. J., Crean A. M. Role of drug adsorption onto the silica surface in drug release from mesoporous silica systems. Mol. Pharm. 2018; 15 (1): 141–9. doi: 10.1021/acs.molpharmaceut.7b00778.
  6. Richards R. M. E., Xing J. Z., Mackay K. Excipient interaction with cetylpyridinium chloride activity in tablet based lozenges. Pharm. Res. 1996; 13: 1258–64. doi: 10.1023/A:1016084824877.
  7. Torrado G., Garcıa-Arieta A., Rıos F., Menendez J. C., Torrado S. Quantitative determination of dimethicone in commercial tablets and capsules by Fourier transform infrared spectroscopy and antifoaming activity test. J. Pharm. Biomed. Anal. 1999; 19 (3–4): 285–92. doi: 10.1016/S0731-7085 (98)00116-2.
  8. Mojsiewicz-Pienkowska K. Size exclusion chromatography with evaporative light scattering detection as a method for speciation analysis of polydimethylsiloxanes. III. Identification and determination of dimeticone and simeticone in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2012; 58: 200–7. doi: 10.1016/j.jpba.2011.09.003.
  9. Moore D.E., Liu T.X., Miao W.G., Edwards A., Elliss R. A RP-LC method with evaporative light scattering detection for the assay of simethicone in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2002; 30 (2): 273–8. doi: 10.1016/S0731-7085(02)00321-7.
  10. Mojsiewicz-Pienkowska K. Size exclusion chromatography a useful technique for speciation analysis of polydimethylsiloxanes. Green Chromatographic Techniques: Separation and Purification of Organic and Inorganic Analytes. 2013; 1 (9): 181–202. doi: 10.1007/978-94-007-7735-4_9.
  11. Brecevic L., Bosan-Kilibarda I., Strajnar F. Mechanism of antifoaming action of simethicone. J. Appl. Toxicol. 1994; 14 (3): 207–11. doi: 10.1002/jat.2550140311.
  12. Громова О.А., Торшин И. Ю., Максимов В. А. Особенность молекулярно-биологических механизмов антацида Антарейт: множественность лечебных эффектов. Consilium Medicum. 2018; 20 (8): 80–4. [Gromova O.A., Torshin I.Yu., Maksimov V.A. Characteristic property of molecular and biological mechanisms of Antareit antacid: multiplicity of therapeutic effects. Consilium Medicum. 2018; 20 (8): 80–4. doi: 10.26442/2075-1753_2018.8.80-84 (in Russian)].
  13. Buist G. J., Burton J. S., Elvidge J. A. An infrared study of the interaction between Aerosil-200 and polydimethylsiloxane (dimethicone-1000). J. Pharm. Pharmacol. 1973; 25 (11): 854–8. doi: 10.1111/j.2042-7158.1973.tb09962.x.
  14. Ross S., Nishioka G. Monolayer studies of silica/polydimethylsiloxane dispersions. J. Colloid Interface Sci. 1978; 65 (2): 216–24. doi: 10.1016/0021-9797 (78)90152-2.
  15. Адсорбция полимеров. Липатов Ю.С. Киев: Наукова думка. 1972; 196. [Adsorption of polymers. Lipatov Yu.S. Kyiv: Science thought. 1972; 196 (in Russian)].
  16. Ross S., Nguyen N. Interactions of poly (dimethylsiloxane) with Lewis bases. Langmuir. 1988; 4 (5): 1188–93. doi: 10.1021/la00083a024.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies