Современные аспекты разработки биоадгезивных лекарственных форм для ротовой полости (обзор)
- Авторы: Анурова М.Н.1, Петруленко К.Э.1, Кузьмин А.Р.1, Краснюк И.И.1, Демина Н.Б.1
-
Учреждения:
- ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
- Выпуск: Том 74, № 5 (2025)
- Страницы: 38-46
- Раздел: Технология лекарственных средств
- URL: https://journals.eco-vector.com/0367-3014/article/view/689652
- DOI: https://doi.org/10.29296/25419218-2025-05-05
- ID: 689652
Цитировать
Полный текст



Аннотация
Создание лекарственных форм (ЛФ), обладающих способностью к биоадгезии, представляет собой актуальное направление развития фармацевтической технологии. В данном обзоре систематизированы современные разработки биоадгезивных ЛФ для применения в ротовой полости, включая пленки, гели, таблетки и микро-/наночастицы. Особое внимание уделено биоадгезивным полимерам, их систематизации и описанию свойств и способов включения в состав ЛФ. Рассмотрены ключевые аспекты строения слизистой оболочки ротовой полости, определяющие эффективность биоадгезии, и методы измерения мукоадгезивных свойств (in vitro и in vivo), включая тесты на растяжение, реологические методы, применение проточных систем и др. Приведены примеры коммерческих препаратов, представленных на российском рынке, и варианты составов ЛФ, описанных в научных публикациях. Обзор также затрагивает проблему стандартизации методов тестирования данных ЛФ, включая использование синтетических и натуральных аналогов слизистой оболочки. В целом разработка биоадгезивных лекарственных для ротовой полости открывает новые возможности для лечения местных и системных заболеваний, сочетая удобство применения, пролонгированный эффект и снижение системных побочных реакций.
Полный текст

Об авторах
Мария Николаевна Анурова
ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Автор, ответственный за переписку.
Email: anurova_m_n@staff.sechenov.ru
ORCID iD: 0000-0002-7649-9616
кандидат фармацевтических наук, доцент кафедры фармацевтической технологии Института фармации им. А.П. Нелюбина
Россия, 119991, Москва, ул. Трубецкая, д. 8Кирилл Эдуардович Петруленко
ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Email: kerjakowski@yandex.ru
ORCID iD: 0009-0000-6828-4976
аспирант кафедры фармацевтической технологии Института фармации им. А.П. Нелюбина
Россия, 119991, Москва, ул. Трубецкая, д. 8Алексей Романович Кузьмин
ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Email: repzcraft@gmail.com
ORCID iD: 0009-0004-0711-6310
аспирант кафедры фармацевтической технологии Института фармации им. А.П. Нелюбина
Россия, 119991, Москва, ул. Трубецкая, д. 8Иван Иванович Краснюк
ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Email: krasnyuki@mail.ru
ORCID iD: 0000-0002-7242-2988
доктор фармацевтических наук, профессор, заведующий кафедрой фармацевтической технологии Института фармации им. А.П. Нелюбина
Россия, 119991, Москва, ул. Трубецкая, д. 8Наталья Борисовна Демина
ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)
Email: demina_n_b@staff.sechenov.ru
ORCID iD: 0000-0003-4307-8791
доктор фармацевтических наук, профессор кафедры фармацевтической технологии, Институт фармации им. А.П. Нелюбина, доктор фармацевтических наук, профессор
Россия, 119991, Москва, ул. Трубецкая, д. 8Список литературы
- Kumar K., Dhawan N., Sharma H., Vaidya S., Vaidya B. Bioadhesive polymers: Novel tool for drug delivery. Artif Cells Nanomed Biotechnol. 2014; 42 (4): 274–83. doi: 10.3109/21691401.2013.815194
- Bassi da Silva J., de Ferreira S.B.S., de Freitas O., Bruschi M.L. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm. 2017; 43(7): 1053–70. doi: 10.1080/03639045.2017.1313858
- Sheoran R. Buccal drug delivery system: A review. International J. of Pharmaceutical Sciences Review and Research. 2018; 50 (1): 40–6.
- Киржанова Е.А., Хутоярский В.В., Балабушевич Н.Г., Харенко А.В., Демина Н.Б. Методы анализа мукоадгезии: от фундаментальных исследований к практическому применению в разработке лекарственных форм. Разработка и регистрация лекарственных средств. 2014; 3 (8): 66–80. [Kirzhanova E.A., Khutoyarskiy V.V., Balabushevich N.G., Kharenko A.V., Demina N.B. Methods of mucoadhesion analysis: from fundamental research to practical application in the development of dosage forms. Razrabotka i registraciya lekarstvennyh sredstv. 2014; 3 (8): 66–80 (in Russian)]
- Shaikh R., Singh T.R.R., Garland M.J., Woolfson A.D., Donnelly R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci. 2011; 3 (1): 89–100. doi: 10.4103/0975-7406.76478
- El Knidri H., Belaabed R., Addaou A., Laajeb A., Lahsini A. Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 2018; 120 (Pt B): 1181–9. doi: 10.1016/j.ijbiomac.2018.08.139
- Pamlényi K., Kristó K., Sovány T., Regdon G. Jr. Development and evaluation of bioadhesive buccal films based on sodium alginate for allergy therapy. Heliyon. 2022; 8 (8): e10364. doi: 10.1016/j.heliyon.2022.e10364
- Zhao X., Chen S., Lin Z., Du C. Reactive electrospinning of composite nanofibers of carboxymethyl chitosan cross-linked by alginate dialdehyde with the aid of polyethylene oxide. Carbohydr Polym. 2016; 148: 98–106. doi: 10.1016/j.carbpol.2016.04.051
- D'Souza A.A., Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016; 13 (9): 1257–75. doi: 10.1080/17425247.2016.1182485
- Sriamornsak P. Application of pectin in oral drug delivery. Expert Opin Drug Deliv. 2011; 8 (8): 1009–23. doi: 10.1517/17425247.2011.584867
- Ahmady A.R., Abu Samah N.H. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm. 2021; 608: 121037. doi: 10.1016/j.ijpharm.2021.121037
- Brannigan R.P., Khutoryanskiy V.V. Progress and current trends in the synthesis of novel polymers with enhanced mucoadhesive properties. Macromol Biosci. 2019; 19 (10): e1900194. doi: 10.1002/mabi.201900194
- Семина И.И., Байчурина А.З. Изучение безвредности применения инновационных пероральных систем доставки лекарственных веществ на основе интерполиэлектролитных комплексов с использованием полимеров фармацевтического назначения Carbopol® и Eudragit®. Фундаментальные исследования. 2014; 12–5: 982–6. [Semina I.I., Baichurina A.Z. The study of the harmlessness of the use of innovative oral drug delivery systems based on interpolyelectrolyte complexes using pharmaceutical polymers Carbopol® and Eudragit®. Fundamental'nye issledovaniya. 2014; 12–5: 982–6 (in Russian)]
- Dos Santos J., Da Silva G.S. Eudragit®: A versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021; 13 (9): 1424. doi: 10.3390/pharmaceutics13091424
- Patra C.N., Priya R., Swain S., Jena G.K. Pharmaceutical significance of Eudragit: A review. Future J. Pharm. Sci. 2017; 3 (1): 33–45. doi: 10.1016/j.fjps.2017.02.001
- Obeidat W.M., Nokhodchi A., Alkhatib H.S. Evaluation of matrix tablets based on Eudragit® E100/Carbopol® 971P combinations for controlled release and improved compaction properties of water soluble model drug paracetamol. AAPS PharmSciTech. 2015; 16 (5): 1169–79. doi: 10.1208/s12249-015-0301-5
- Zhang Q., Li X., Jasti B.R. Role of physicochemical properties of some grades of hydroxypropyl methylcellulose on in vitro mucoadhesion. Int J. Pharm. 2021; 609: 121218. doi: 10.1016/j.ijpharm.2021.121218
- Zhu Z., Zhai Y., Zhang N., Leng D., Ding P. The development of polycarbophil as a bioadhesive material in pharmacy. Asian J. Pharm. Sci. 2013; 8 (4): 218–27. doi: 10.1016/j.ajps.2013.09.003
- Kumar V., Dantuluri A.K., Liu Y., During T. Hydroxyethylcellulose as a versatile viscosity modifier in the development of sugar-free, elegant oral liquid formulations. International Journal of Current Research in Chemistry and Pharmaceutical Sciences. 2023; 10 (4): 1–23. doi: 10.22192/ijcrcps.2023.10.04.001
- Rahman M.S., Hasan M.S., Nitai A.S., Nam S., Karmakar A.K., Ahsan M.S., Shiddiky M.J.A., Ahmed M.B. Recent developments of carboxymethyl cellulose. Polymers (Basel). 2021; 13 (8): 1345. doi: 10.3390/polym13081345
- Madni A., Khalid A., Wahid F., Ayub H., Khan R., Kousar R. Preparation and applications of guar gum composites in biomedical, pharmaceutical, food, and cosmetics industries. Curr Nanosci. 2021; 17 (3): 365–79. doi: 10.2174/1573413716999201110142551
- Chaturvedi S., Kulshrestha S., Bhardwaj K., Jagir R. A review on properties and applications of xanthan gum. In: Microbial Polymers: Applications and Ecological Perspectives. 2021; 87–107. doi: 10.1007/978-981-16-0045-6_4
- Qi X., Tester R.F. Bioadhesive properties of β-limit dextrin. J Pharm Pharm Sci. 2011; 14 (1): 60–6. doi: 10.18433/J3459B
- Dey A., Bhattacharya P., Neogi S. Bioadhesives in biomedical applications: A critical review. In: Progress in Adhesion and Adhesives. 2021; 6: 131–53. doi: 10.1002/9781119846703.ch5
- Ivarsson D., Wahlgren M. Comparison of in vitro methods of measuring mucoadhesion: ellipsometry, tensile strength and rheological measurements. Colloids Surf B Biointerfaces. 2012; 92: 353–9. doi: 10.1016/j.colsurfb.2011.12.020
- Mackie A.R., Goycoolea F.M., Menchicchi B., Caramella C.M., Saporito F., Lee S., Stephansen K., Chronakis I.S., Hiorth M., Adamczak M., Waldner C., Schwarz A., Inngjerdingen K.T. Innovative methods and applications in mucoadhesion research. Macromol Biosci. 2017; 17 (8): 1600534. doi: 10.1002/mabi.201600534
- Woertz C., Preis M., Breitkreutz J., Kleinebudde P. Assessment of test methods evaluating mucoadhesive polymers and dosage forms: An overview. Eur J Pharm Biopharm. 2013; 85 (3 Pt B): 843–53. doi: 10.1016/j.ejpb.2013.06.023
- Gyarmati B., Stankovits G., Szilágyi B.A., Galata D.L., Gordon P., Szilágyi A. A robust mucin-containing poly(vinyl alcohol) hydrogel model for the in vitro characterization of mucoadhesion of solid dosage forms. Colloids Surf B Biointerfaces. 2022; 213: 112406. doi: 10.1016/j.colsurfb.2022.112406
- Cook M.T., Khutoryanskiy V.V. Mucoadhesion and mucosa-mimetic materials–A mini-review. Int. J. Pharm. 2015; 495 (2): 991–8. doi: 10.1016/j.ijpharm.2015.09.064
- Keely S., Rullay A., Wilson C., Carmichael A., Carrington S., Corfield A., Haddleton D.M., Brayden D.J. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly(methacrylate) and N-trimethylated chitosan polymers. Pharm Res. 2005; 22 (1): 38–49. doi: 10.1007/s11095-004-9007-1
- Hamed R., Fiegel J. Synthetic tracheal mucus with native rheological and surface tension properties. J. Biomed Mater Res A. 2014; 102A (6): 1788–98. doi: 10.1002/jbm.a.34851
- Dinu V., Yakubov G.E., Lim M., Hurst K., Adams G.G., Harding S.E., Fisk I.D. Mucin immobilization in calcium alginate: A possible mucus mimetic tool for evaluating mucoadhesion and retention of flavour. Int. J. Biol. Macromol. 2019; 138: 831–6. doi: 10.1016/j.ijbiomac.2019.07.148
- Miyazaki S., Kawasaki N., Nakamura T., Iwatsu M., Hou W.M., Attwood D. Oral mucosal bioadhesive tablets of pectin and HPMC: in vitro and in vivo evaluation. Int. J. Pharm. 2000; 204 (1–2): 127–32. doi: 10.1016/S0378-5173(00)00491-9
- Kotadiya R., Karan S. Development of bioadhesive buccal tablets of nicorandil using a factorial approach. Turk J. Pharm. Sci. 2020; 17 (4): 388–97. doi: 10.4274/tjps.galenos.2019.09226
- Hoffmann A., Fischer J.T., Daniels R. Development of probiotic orodispersible tablets using mucoadhesive polymers for buccal mucoadhesion. Drug Dev Ind Pharm. 2020; 46 (11): 1753–62. doi: 10.1080/03639045.2020.1831013
- Camargo L.G., Remiro P.D.F.R., Rezende G.S., Santos S.D.C., Franz-Montan M., Moraes Â.M. Development of bioadhesive polysaccharide-based films for topical release of the immunomodulatory agent imiquimod on oral mucosa lesions. Eur Polym J. 2021; 151: 110422. doi: 10.1016/j.eurpolymj.2021.110422
- Castán H., Ruiz M.A., Clares B., Morales M.E. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv. 2015; 22 (6): 869–76. doi: 10.3109/10717544.2014.896958
- Kassab H.J., Thomas L.M., Jabir S.A. Development and physical characterization of a periodontal bioadhesive gel of gatifloxacin. Int. J. Appl Pharm. 2017; 9 (3): 31–6. doi: 10.22159/ijap.2017v9i3.7056
- Жапаркулова К. А., Ибрагимова Л. Н., Орынбекова С. О., Сейталлиева А. М. Фармацевтическая разработка адгезивной дентальной пасты с маслом зизифоры бунге. Фармация Казахстана. 2016; 10: 34–8. [Zhaparkulova K.A., Ibragimova L.N., Orynbekova S.O., Seitalieva A.M. Pharmaceutical development of adhesive dental paste with ziziphora bunge oil. Farmaciya Kazakhstana. 2016; 10: 34–8 (in Russian)]
- Oh M.J., Kim J., Kim J., Lee S., Xiang Z., Liu Y., Koo H., Lee D. Drug-loaded adhesive microparticles for biofilm prevention on oral surfaces. J. Mater Chem B. 2024; 12 (20): 4935–44. doi: 10.1039/D4TB00134F
Дополнительные файлы
