New data on chemical composition and Raman spectra of epidote-supergroup minerals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Compositional variations of the epidote-supergroup minerals from various magmatic, metasomatic and metamorphic formations of the Pelagonian Massif (Republic of Macedonia), the Urals (Russia) and the Eifel Mountains (Germany) have been studied and new data on isomorphism in these minerals have been obtained. Nine potentially new mineral species belonging to the epidote supergroup were identified, including minerals in which Cr, Ga, La, Ce, Nd and Pb are the species-defining components, as well as a number of varieties with unusually high Zn and Cu contents. Relationship between the chemical composition of epidote-supergroup minerals and their Raman spectra is discussed.

Full Text

Restricted Access

About the authors

D. A. Varlamov

Institute of Problems of Chemical Physics RAS; Institute of Experimental Mineralogy RAS

Author for correspondence.
Email: dima@iem.ac.ru
Russian Federation, Chernogolovka; Chernogolovka

V. N. Ermolaeva

Institute of Experimental Mineralogy RAS; Vernadsky Institute of Geochemistry and Analytical Chemistry RAS

Email: cvera@mail.ru
Russian Federation, Chernogolovka; Moscow

N. V. Chukanov

Institute of Problems of Chemical Physics RAS; Faculty of Geology, Moscow State University

Email: chukanov@icp.ac.ru
Russian Federation, Chernogolovka; Moscow

S. Jančev

Faculty of Technology and Metallurgy, Saints Cyril and Methodius University

Email: dima@iem.ac.ru
Macedonia, the former Yugoslav Republic of, Skopje

M. F. Vigasina

Faculty of Geology, Moscow State University

Email: dima@iem.ac.ru
Russian Federation, Moscow, Russia

P. Yu. Plechov

Faculty of Geology, Moscow State University

Email: dima@iem.ac.ru
Russian Federation, Moscow; Moscow

References

  1. Armbruster T. H., Bonazzi P., Akasaka M., Bermanec V., Chopin C., Giere R., Heuss-Assbichler S., Liebscher A., Menchetti S., Pan Y., Pasero M. Recommended nomenclature of epidote-group minerals. Eur. J. Miner. 2006. Vol. 18. P. 551-567.
  2. Barić L. Piemontit, gahnit und rutil aus dem Fundort der Blei und Zinkerze bei dem Dorfe Nezilovo in Mazedonien. Glasnik Prirodnjackog Muzeja. Beograd. Ser. A. 1960. Vol. 13. P. 200-204 (in German).
  3. Chukanov N. V., Göttlicher J., Möckel S., Sofer Z., Belakovskiy D. I. Åskagenite-(Nd), Mn2+NdAl2Fe3+(Si2O7)(SiO4)O2, a new mineral of the epidote supergroup. New data on minerals. 2010. Vol. 45. P. 17-22 (in Russian).
  4. Chukanov N. V., Varlamov D. A., Nestola F., Belakovskiy D. I., Göettlicher J., Britvin S. N., Lanza A., Janćev S. Piemontite-(Pb), CaPbAl2Mn3+[Si2O7][SiO4]O(OH), a new mineral species of the epidote supergroup. Neues Jahrbuch für Mineralogie - Abhandlungen. 2012. Vol. 189. N 3. P. 275-286.
  5. Chukanov N. V. Infrared spectra of mineral species: Extended library. Dordrecht; Heidelberg; New York; London: Springer-Verlag GmbH, 2014. 1716 p.
  6. Chukanov N. V., Krivovichev S. V., Pakhomova A. S., Pekov I. V., Schäfer Ch., Vigasina M. F., Van K. V. Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur. J. Miner. 2014. Vol. 26. P. 103-111.
  7. Chukanov N. V., Jančev S., Pekov I. V. The association of oxygen-bearing minerals of chalcophile elements in the orogenetic zone related to the «mixed series» complex near Nežilovo, Republic of Macedonia. Macedonian J. of Chem. and Chem. Engineering. 2015. Vol. 34. N 1. P. 115-124.
  8. Chukanov N. V., Aksenov S. M., Jančev S., Pekov I. V., Göttlicher J., Polekhovsky Yu. S., Rusakov V. S., Nelyubina Yu. V., Van K. V. A new mineral species ferricoronadite, Pb[Mn4+6(Fe3+,Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties. Phys. Chem. Miner. 2016. Vol. 43. P. 503-514.
  9. Chukanov N. V., Zubkova N. V., Schäfer C., Varlamov D. A., Ermolaeva V. N., Polekhovsky Yu. S., Jančev S., Pekov I. V., Pushcharovsky D. Yu. New data on ferriakasakaite-(La) and related minerals extending the compositional field of the epidote supergroup. Eur. J. Miner. 2018. Vol. 30. N 2. P. 323-332.
  10. Eppler W. F. Praktische Gemmologie. 2nd Ed., Stuttgart: Rühle-Diebener-Verlag, 1984. 504 p.
  11. Ermolaeva V. N., Chukanov N. V., Jančev S., Van K. V. Endogenic oxide parageneses with chalcophile elements in the orogenic zone related to the «Mixed series» of the Pelagonian massif, republic of Macedonia. New data on minerals. 2016. Vol. 51. P. 12-19 (in Russian).
  12. Ermolaeva V. N., Varlamov D. A., Jančev S., Chukanov N. V. Spinel-group and hӧgbomite-supergroup minerals from a nonsulfide endogeneous Pb-Zn-Sb-As association in the Pelagonian massif, Macedonia. Zapiski RMO (Proc. Russian Miner. Soc.). 2018. Vol. 147. N 3. P. 27-43 (in Russian).
  13. Frechen J. Vorgänge der Sanidinit-Bildung im Laacher Seegebiet. Fortschritte der Mineralogie. 1947. Vol. 26. P. 147-166 (in German).
  14. Gatta G. D., Meven M., Bromiley G. Effects of temperature on the crystal structure of epidote: a neutron single-crystal diffraction study at 293 and 1070 K. Phys. Chem. Miner. 2010. Vol. 37. P. 475-485.
  15. Grapes R. H. Chromian epidote and zoisite in kyanite amphibolite, Southern Alps, New Zealand. Amer. Miner. 1981. Vol. 66. P. 974-975.
  16. Jančev S., Chukanov N. V., Ermolaeva V. N. Association of oxide minerals - concentrators of chalcophile elements (Pb, Zn, Sb) from the «Mixed series» near Nežilovo village, Macedonia. Mat. of the Third Congress of Geologists of Republic of Macedonia. Struga, 30 September-2 October, 2016. Vol. 2. 2016. P. 401-404.
  17. Kolitsch U., Mills S. J., Miyawaki R., Blass G. Ferriallanite-(La), a new member of the epidote supergroup from the Eifel, Germany. Eur. J. Mineral. 2012. Vol. 24. P. 741-747.
  18. Kuznetsov E. A. Petrographic review of Mochalin Log. In: Rare-earth minerals of Kyshtym area. Proc. Inst. of Applied Mineralogy. 1930. Vol. 44. P. 58-72 (in Russian).
  19. Mayorova T. P., Varlamov D. A., Soboleva A. A. Mineralogy and geochemistry of Tykatlova gold-bearing occurrence with gallium mineralization (Sub-Polar Urals). In: «The main issues in the doctrine about endogenic ore deposits: new horizons». All-Russ. conf. devoted to the 120 anniversary ofA. G. Betekhtin. Moscow, November 20-22, 2017. Moscow: IGEM RAS, 2017. P. 99-103 (in Russian).
  20. Mills S. J., Hatert F., Nickel E. H., Ferraris G. The standartization of mineral group hierarchies: application to recent nomenclature proposals. Eur. J. Miner. 2009. Vol. 21. P. 1073-1080.
  21. Moine B., Fortune J. P., Moreau P., Viguier F. Comparative mineralogy, geochemistry, and conditions of formation of two metasomatic talc and chlorite deposits; Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Econ. Geol. 1989. Vol. 84 (5). P. 1398-1416.
  22. Ödman O. H. Manganese mineralization in the Ultevis district, Jokkmokk, North Sweden. Part 2: Mineralogical notes. Sveriges Geologiska Undersökning. Serie C. 1950. Vol. 44. N 2. P. 1-27.
  23. Palache C. The minerals of Franklin and Sterling Hill Sussex County, New Jersey. Washington: United States Government Printing Office. 1937. 135 p.
  24. Palache Ch. A comparison of the ore deposits of Longban, Sweden, with those of Franklin, New Jersey. Amer. Miner. 1929. Vol. 14. N 2. P. 43-47.
  25. Pekov I. V., Alimova A. N., Kononkova N. N., Kanonerov A. A. To mineralogy of Mochalin Log in South Urals. I. Minerals of the bastnaesite family: history of studying and new data. Ural Geol. Mag. 2002. Vol. 4. N 28. P. 127-144 (in Russian).
  26. Piret P., Deliens M., Pinet M. La trimounsite-(Y), nouveau silicotitanate de terres rares de Trimouns, Ariège, France: (TR)2Ti2SiO9. Eur. J. Miner. 1990. Vol. 2. P. 725-729.
  27. Schmitt A. K. Laacher See revisited: High-spatial-resolution zircon dating indicates rapid formation of a zoned magma chamber. Geology. 2006. Vol. 34. P. 597-600.
  28. Schmitt A. K., Wetzel F., Cooper K. M., Zou H., Wörner G. Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U-Th dating of intrusive carbonatites. J. Petrol. 2010. Vol. 51. P. 1053-1085.
  29. Silbermintz V. A. The cerite deposit in Kyshtym district (Urals). In: Rare-earth minerals of Kyshtym area. Proc. Inst. of Applied Mineralogy. 1930. Vol. 44. P. 5-42 (in Russian).
  30. Svyazhin N. V. Primary deposits of rare-earth and rare-metal minerals of Mochalin Log, Kyshtym district, Chelyabinsk Region. Proc. of the Sverdlovsk Mining Instit. 1956. Vol. 18. P. 88-98 (in Russian).
  31. Treloar P. J. Chromian muscovites and epidotes from Outokumpu. Finland. Mineral. Mag. 1987. Vol. 51. P. 593-599.
  32. Treloar P. J., Charnley N. R. Chromian allanite from Outokumpu, Finland. Canad. Miner. 1987. Vol. 25. P. 413-418.
  33. Varlamov D. A., Soboleva A. A., Mayorova T. P. Galloepidote - new end-member in epidote group. IMA 2010, 20th General Meeting of the International Mineralogical Association, Budapest, 21-27 August, 2017. Budapest, 2010. P. 489.
  34. Varlamov D. A., Ermolaeva V. N., Jančev S., Chukanov N. V. Pyrochlore-supergroup minerals from a nonsulfide endogeneous association of Pb-Zn-Sb-As minerals in the Pelagonian massif, Macedonia. Zapiski RMO (Proc. Russian Miner. Soc.). 2017а. N 4. P. 65-78 (in Russian).
  35. Varlamov D. A., Udoratina O. V., Burakov N. N. High-chromium ferriallanite - new mineral of epidote supergroup? Proc. of Annivers. Congress of Russian Min. Soc. «200 years of RMS». Saint Petersburg, October 10-13, 2017. Saint Petersburg: LEMA, 2017б. Vol. 2. P. 195-197.
  36. Yudovich Ya. E., Efanova L. I., Shvetsova I. V., Kozyreva I. V., Kotelnikova E. A. Zone of interformational contact in the kar of Grubependity Lake. Syktyvkar: Geoprint, 1998. 98 p. (in Russian).
  37. Yudovjch Ya. E., Kozyreva I. V., Ketris M. P., Shvetsova I. V. Geochemistry of REE in zone of interformational contact on the Maldynyrd Ridge (Subpolar Urals). Geochem. Int. 2001. N 1. P. 1-13 (in Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1, a: grain of epidote-supergroup minerals with zones of piemontite (1), allanite-(Ce) (2), «ferripiemontite-(Pb)» (3) in association with baryte (4) and magnesio-riebeckite (5) (sample 1); б: piemontite (1) with zones containing up to 3—4 wt % of PbO (light areas) in granular aggregate of tilasite (2) in association with quartz (3) and baryte (4) (sample 2); в: piemontite grains (1) with outher zones of piemontite-(Pb) (2) and «ferripiemontite-(Pb)» (3) in baryte (4), in association with albite (5) and zincohögbomite (6) (sample 6); г: fragment of zoned piemontite — piemontite-(Pb) (1) with areas of «ferripiemontite-(Pb)» (2) in association with quartz (3), baryte (4), magnesio-riebeckite (5) and hematite (6) (sample 6).

Download (703KB)
3. Fig. 2, a: individual of epidote-supergroup minerals with piemontite (1) and piemontite-(Pb) (2) zones in association with magnesio-riebeckite (3) and Mn4+-analogue of zincohögbomite (4) (sample 6); б: zoned individuals of epidote (1) in baryte aggregate (2), in association with nežilovite (3), almeidaite (4), zincohögbomite (5) and Zn-bearing talk (6) (sample 7); в: grains of epidote-supergroup minerals in sphalerite with zones of Ga analogue of epidote (1), 2 — Ga-rich allanite, 3 — low-Ga allanite, 4 — epidote (sample 4); г: grain of epidote-supergroup minerals with zones of Cr-dominant allanite-group mineral (1, see analyses 9—10 in Table 2), allanite-(Ce) (2) and epidote (3) (sample 15).

Download (746KB)
4. Fig. 3. Correlations between total amounts (apfu) of large cations (Pb, REE) and Ca in epidote-supergroup minerals from the Pelagonian massif.

Download (43KB)
5. Fig. 4. Relationship between elements in the A2 site (Ca, Pb and ∑REE, apfu) in epidote-supergroup minerals from the Pelagonian massif, provided that the A1 site contains only Ca.

Download (64KB)
6. Fig. 5. Relationship between major elements (Al, Mn and Fe, apfu) in the Ml and M3 sites of epidote-supergroup minerals from the Pelagonian massif, provided that the M2 site contains only Al.

Download (49KB)
7. Fig. 6. Relationship between Al, Mn + Fe and Mg + Zn + Cu (apfu) in the M1 and M3 sites of epidote-supergroup minerals from the Pelagonian massif, provided that the M2 site contains only Al.

Download (51KB)
8. Fig. 7. Correlation between REE and Mg + Zn + Cu (apfu) in epidote-supergroup minerals from the Pelagonian massif.

Download (49KB)
9. Fig. 8. Raman spectra of the chromium allanite-group mineral from the sample 15 (1), gallium epidote-supergroup mineral from the sample 14 (2), piemontite, sample 12 (3), and the holotype of piemontite-(Pb), sample 4 (4).

Download (84KB)
10. Fig. 9. Raman spectra of dissakisite-(Ce) from the sample 13 (1), ferriallanite-(La) from the sample 11 (2), ferriallanite-(La/Ce) from the sample 9 (3), and ferriakasakaite-(La) from the sample 10 (4).

Download (63KB)

Copyright (c) 2019 Российская академия наук