Mineral indicators of early magmatic to autometasomatic stages of the formation of Iron Oxide-Copper-Gold and Iron Oxide-Apatite mineralization in gabbroic rocks from Ildeus and Lucha intrusions (Stanovoy superterrane, Russian Far East)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Mesozoic subduction-related gabbroic and ultramafic rocks from the Ildeus and Lucha intrusions in the central part of the Stanovoy superterrane contain microinclusions of iron-titanium oxides (magnetite, titanomagnetite, ilmenite, rutile, and titanite), apatite, sulfates (barite) and sulfides (pyrite, pyrrhotite, and chalcopyrite). Earlier, we attributed these minerals to the indicator ITOASS (Iron-Titanium Oxide–Apatite–Sulfate–Sulfide) assemblage for the Iron Oxide-Copper-Gold (IOCG) and Iron Oxide-Apatite (IOA) mineralization. The ITOASS assemblage is associated with hematite, silver chlorides, and native gold. Host minerals for ITOASS microinclusions are mostly plagioclase, pyroxenes, and high-Al amphibole, suggesting the late-stage magmatic origin of them. Late-stage magmatic amphiboles carry textural and compositional evidence for early stages of metasomatic alteration of minerals of ITOASS assemblage, that possibly indicate hydrothermal-metasomatic (autometasomatic) stage of the evolution of IOCG-IOA-type ore systems. We conclude that microinclusions of the ITOASS assemblages can be used for regional prespecting of iron oxide copper-gold and iron-oxide mineralization in accretionary-collisional structures of the Russian Far East.

Full Text

Restricted Access

About the authors

P. К. Кеpezhinskas

Institute of Tectonics and Geophysics Far East Branch RAS

Email: nberdnikov@yandex.ru
Russian Federation, Khabarovsk

N. V. Berdnikov

Institute of Tectonics and Geophysics Far East Branch RAS

Author for correspondence.
Email: nberdnikov@yandex.ru
Russian Federation, Khabarovsk

V. О. Krutikova

Institute of Tectonics and Geophysics Far East Branch RAS

Email: nberdnikov@yandex.ru
Russian Federation, Khabarovsk

N. S. Konovalova

Institute of Tectonics and Geophysics Far East Branch RAS

Email: nberdnikov@yandex.ru
Russian Federation, Khabarovsk

N. V. Kozhemyako

Institute of Tectonics and Geophysics Far East Branch RAS

Email: nberdnikov@yandex.ru
Russian Federation, Khabarovsk

References

  1. Balykin P. A., Polyakov G. V., Bognibov V. I., Petrova T. E. Proterozoic basic-ultrabasic formations of the Baikal-Stanovoy region. Nauka: Novosibirsk, 1986. 204 p. (in Russian).
  2. Barton M. D. Iron oxide (Cu-Au-REE-P-Ag-U-Co) systems. Treatise in Geochemistry. 2014. Vol. 13. P. 515—541.
  3. Belyaev E. V., Panskikh E. A., Fayzullin R. M., Roganov G. V., Gavrilov V. V. Mineragenic specialization and perspective assessment of the Dzhugdzhuro-Stanovoi apatite-bearing province. Russian Geol. Geophys. 1981. N 12. P. 55—63 (in Russian).
  4. Berdnikov N. V., Kepezhinskas P. K., Nevstruyev V. G., Krutikova V. O., Konovalova N. S. Magmatic native gold: composition, texture, genesis, and evolution in the Earth’s crust. Russian Geol. Geophys. 2024. Vol. 65. N 3. P. 388—403.
  5. Berdnikov N., Kepezhinskas P., Konovalova N., Kepezhinskas N. Formation of gold alloys during crustal differentiation of convergent zone magmas: constraints from an Au-rich websterite in the Stanovoy Suture Zone (Russian Far East). Geosciences. 2022. Vol. 12. Paper 126.
  6. Berdnikov N., Nevstruev V., Kepezhinskas P., Astapov I., Konovalova N. Gold in mineralized volcanic systems from the Lesser Khingan Range (Russian Far East): textural types, composition and possible origins. Geosciences. 2021. Vol. 11. Paper 103.
  7. Buchko I. V., Izokh A. E., Nosyrev M. Yu. Sulfide mineralization of ultrabasite-basites of the Stanovoi megablock. Russian J. Pacific Geol. 2002. Vol. 21. N 4. P. 56—68 (in Russian).
  8. Buchko I. V.. Sorokin A. A., Ponomarchuk V. A., Kotov A. B., Travin A. V., Kovach V. P. Trachyandesites of the Mogot volcanic field (Stanovoi volcanoplutonic belt, East Siberia): age, geochemical features and sources. Russian Geol. Geophys. 2016. Vol 57. N 10. P. 1772—1783 (in Russian).
  9. Chiaradia M., Banks D., Cliff R., Marschik R., de Haller A. Origin of fluids in iron oxide-copper-gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br. Miner. Deposita. 2006. Vol. 41. P. 565—573.
  10. Del Real I., Reich M., Simon A. C., Deditius A., Barra F., Rodriguez-Mustafa M. A., Thompson J. F. H., Roberts M. P. Formation of giant iron oxide-copper-gold deposits by superimposed episodic hydrothermal pulses. Sci. Reports. 2023. Vol. 13. 12041.
  11. Glebovitsky V. A., Kotov A. B., Salnikova E. B., Larin A. M., Velikoslavinsky S. D. Granulite complexes of the Dzhugdzhur-Stanovoy folded region and the Permian belt: age, conditions and geodynamic settings of metamorphism manifestation. Geotektonika. 2009. N 4. P. 3—15 (in Russian).
  12. Hammerli J., Greber N. D., Martin L., Bouvier A. -S., Kemp A. I. S., Fiorentini M. L., Spandenberg J. E., Ueno Y., Schaltegger U. Tracing sulfur sources in the crust via SIMS measurements of sulfur isotopes in apatite. Chem. Geol. 2021. Vol. 579. 12024.
  13. Izvekova A. D., Damdinov B. B., Rampilov M. O. Rare earth mineralization in the ores of the Gurvunur apatite-magnetite deposit (Ozerninsky ore district, Western Transbaikalia). Ores and Metals. 2024. N 2. P. 55—68 (in Russian).
  14. Kepezhinskas P. K., Berdnikov N. V., Krutikova V. O. Metal and mineral microinclusions in adakites from the framing of the Utanak massif (Stanovoi superterrane, Russian Far East) as evidence for metal enrichment in adakitic magmas. Russian Geol. Geophys. 2025. N 2. P. 143152.
  15. Kepezhinskas P. K., Khanchuk A. I., Berdnikov N. V., Krutikova V. O. Minerals of rare earth elements in ultrabasites of the Ildeus massif (Stanovoy cratonic superterrane): the influence of post-collision processes on deep ore-magmatic systems of convergent plate boundaries. Russian J. Pacific Geol. 2024. Vol. 43. N 6. P. 3—23.
  16. Kepezhinskas P., Berdnikov N., Kepezhinskas N., Krutikova V., Astapov I. Magmatic-hydrothermal transport of metals at arc plutonic roots: insights from the Ildeus mafic-ultramafic complex, Stanovoy Suture Zone (Russian Far East). Minerals. 2023. Vol. 13. Paper 878.
  17. Kepezhinskas P., Berdnikov N., Krutikova V., Kozhemyako N. Iron-titanium oxide-apatite-sulfide-sulfate microinclusions in gabbro and adakite from the Russian Far East indicate possible magmatic links to iron oxide-apatite and iron oxide-copper-gold deposits. Minerals. 2024. Vol. 14. P. 188.
  18. Kopylov M. I. Predictive prospecting features and criteria of titanium and copper-nickel deposits in the Far Eastern gabbro-anorthosite belt. Ore and Metals. 2009. N 4. P. 45—56 (in Russian).
  19. Kostin A. V. Mineral varieties of Fe-oxide-Cu ores of the Jalkan, Rosomaha and Hurat outcrops (Sette-Daban, Eastern Yakutia). Native Geol. 2016. N 6. P. 11—15 (in Russian).
  20. Kovalev K. R., Kalinin Yu. A., Turkina O. M., Gimon V. O., Abramov B. N. Kultuminskoye gold-copper-iron skarnovo deposit (Eastern Transbaikalia, Russia): petrogeochemical features of magmatism and ore formation processes. Russian Geol. Geophys. 2019. Vol. 60. N 6. P. 749—771.
  21. Krutikova V. O., Berdnikov N. V., Kepezhinskas P. K. Metal and mineral microinclusions in rocks: Research finding interpretation and application to the study of magmatic systems of Kamchatka and Stanovoi Fold Belt. Russian J. Pacific Geol. 2024. Vol. 18. N 1. P. 37—49.
  22. Li R., Chen H., Wu N., Wang X., Xia X. Multiple sulfur isotopes in post-Archean deposits as a potential tracer for fluid mixing processes: an example from an iron oxide-copper-gold (IOCG) deposit in southern Peru. Chem. Geol. 2021. Vol. 575. P. 120230.
  23. Lledo H. L., Jenkins D. M. Experimental investigation of the upper thermal stability of Mg-rich actinolite; Implications for Kiruna-type iron deposits. J. Petrol. 2008. Vol. 49. P. 225—238.
  24. Mateo L., Tornos F., Hanchar J. M., Villa I. M., Stein H. J., Delgado A. The Montecristo mining district, northern Chila: the relationships between vein-like magnetite-apatite and iron oxide-copper-gold deposits. Miner. Deposita. 2023. Vol. 58. P. 1023—1045.
  25. McDonough W.F., Sun S. S. The composition of the Earth. Chem. Geol. 1995. Vol. 120. P. 223—253.
  26. Migachev I. F., Minina O. V., Zvezdov V. S. Prospects of the territory of the Russian Federation for porphyry copper ores. Ore and Metals. 2015. N 1. P. 74—92 (in Russian).
  27. Neymark L. A., Larin A. M., Ovchinnikova G. V., Yakovleva S. Z. Uranium-lead age of Dzhugdzhur anorthosites. Doklady Earth Sci. 1992. Vol. 323. N 3. P. 514—518 (in Russian).
  28. Ojeda A., Barra F., Reich M., Romero R., Tapia M. J. Evolution and fertility of magmas associated with iron oxide-apatite (IOA) deposits, Coastal Cordillera, Northern Chile: a zircon petrochronology perspective. Gondwana Research. 2024. Vol. 131. P. 38—56.
  29. Reich M., Simon A. C., Barra F., Palma G., Hou T., Bilenker L. Formation of iron oxide-apatite deposits. Nature Reviews Earth & Environment. 2022. Vol. 3. P. 758—775.
  30. Richards J. P., Mumin A. H. Magmatic-hydrothermal processes within an evolving Earth: iron oxide-copper-gold and porphyry Cu±Mo±Au deposits. Geology. 2013. Vol. 41. P. 767—770.
  31. Rojas P. A., Barra F., Reich M., Deditius A., Simon A., Uribe F., Romero R., Rojo M. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile. Miner. Deposita. 2018. Vol. 53. P. 947—966.
  32. Romero R., Barra F., Reich M., Ojeda A., Tapia M. J., del Real I., Simon A. Contrasting magma chemistry in the Candelaria IOCG district caused by changing tectonic regimes. Sci. Reports. 2024. Vol. 14. P. 10793.
  33. Schlegel T. U., Wagner T., Boyce A., Heinrich C. A. A magmatic source of hydrothermal sulfur for the Prominent Hill deposit and associated prospects in the Olympic Dam iron oxide copper-gold (IOCG) province of South Australia. Ore Geol. Reviews. 2017. Vol. 89. P. 1058—1090.
  34. Skirrow R. G. Iron oxide copper-gold (IOCG) deposits — a review (part 1): settings, mineralogy, ore geochemistry and classification. Ore Geol Review. 2022. Vol. 140. P. 1—36.
  35. Solovyov S. G. Iron oxide-gold-copper and related deposits. Moskow: Nauchny Mir, 2011. 246 p. (in Russian).
  36. Velasco F., Tornos F., Hanchar J. M. Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol. Reviews. 2016. Vol. 79. P. 346—366.
  37. Warr L. N. IMA–CNMNC approved mineral symbols. Miner. Mag. 2021. Vol. 85. P. 291—320.
  38. Williams P. J., Barton M. D., Johnson D. A., Fontboté L., de Heller A., Mark G., Oliver N. H. S., Marschik R. Iron oxide copper-gold deposits: geology, space-time distributions, and possible modes of origin. Econ. Geol. 2005. Vol. 100. P. 371—405.
  39. Yan S. C., Wan B., Anenburg M., Mavrogenes J. A. Silicate and iron phosphate melt immiscibility promotes REE enrichment. Geochem. Perspect. Lett. 2024. Vol. 32. P. 14—20.
  40. Zeng L.-P., Zhao X.-F., Spandler C., Mavrogenes J. A., Mernagh T. P., Liao W., Fan Y.-Zh., Hu Y., Fu B., Li J.-W. The role of iron-rich hydrosaline liquids in the formation of Kiruna-type iron oxide-apatite deposits. Sci. Advances. 2024. V. 10. N 17.
  41. Zhu Zh. Gold in iron oxide copper-gold deposits. Ore Geol. Reviews. 2016. Vol. 72. P. 37—42.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. а — Location of the Stanovoy superterrane and the Ildeus-Lucha magmatic ore system within the geologic structures of the Russian Far East according to (Kepezhinskas et al., 2024; Кepezhinskas et al., 2025). Principal structural units: 1 — Siberian craton; 2 — Stanovoy superterrane; 3 — Mongol-Okhotsk belt (T3–J2); 4 — Neoproterozoic terranes; 5—8 — terrane collages accreted in PZ1 (5), PZ3 (6), P2–T2 (7) and K2–N (8); б — schematic geologic map of Ildeus-Lucha magmatic ore system area; в, г — internal structure of the Ildeus (c) and Lucha (d) basic-ultrabasic intrusions.

Download (50KB)
3. Fig. 2. Petrographic and geochemical features of gabbroic rocks from the Ildeus and Lucha basic-ultrabasic intrusions: а — melanocratic gabbro, б — leucocratic gabbro (Dunitovy area); в-trace element distribution in gabbroic rocks from the Ildeus and Lucha intrusions normalized to primitive mantle (McDonough, Sun, 1995). Mineral abbreviations in figures and figure captions follow the IMA nomenclature (Warr, 2021).

Download (60KB)
4. Fig. 3. ITOASS assemblage microinclusions in the Ildeus gabbro: а — subisometric segregation of pyrite with barite, rutile, and quartz in amphibole; б — pyrite segregation with ilmenite and titanite in amphibole matrix; в-ilmenite intergrowth with rutile in amphibole; г — composite inclusion of pyrite, pyrrhotite, and chalcopyrite with barite, rutile and ilmenite in amphibole matrix; д — inclusion of chalcopyrite, barite, and hematite (?) in amphibole matrix; е — microinclusion of silver chloride (+Cu) in amphibole. BSE images.

Download (52KB)
5. Fig. 4. ITOASS microinclusions in the Dunitovy area of the Lucha intrusion: а — ilmenite intergrowth with apatite in association with pyrite and biotite in plagioclase; б — pyrite grain with magnetite, hematite (?), chalcopyrite, and pyrrhotite inlcusions in association with Fe-actinolite and actinolite in clinopyroxene; в — inclusion of ilmenite, pyrite, apatite, and chlorite in orthopyroxene; г — inclusion of pyrite, hematite (?), and barite in amphibole-plagioclase matrix; д — inclusions of titanomagnetite rimmed by titanite and ilmenite at the contact between amphibole and clinopyroxene grains; е — inclusions of ilmenite in quartz-amphibole matrix; ж — needle-like ilmenite in association with actinolite in amphibole; з — needle-like ilmenite and native iron in association with biotite in plagioclase; и — microparticle of Cu–Ag–Au alloy with minor nickel. BSE images.

Download (74KB)
6. Fig. 5. Microinclusions of Cu-Ag-Au alloys (а – in amphibole, б — in plagioclase, в — in chlorite) in gabbroic rocks from the Dunitovy area of the Lucha intrusion. BSE images.

Download (13KB)
7. Fig. 6. Initial stages of metasomatic alterations of gabbroic rocks from the Dunitovy area of the Lucha intrusion: а — replacement of Al-rich amphibole with amphibole with lower Al and Mg contents in association with magnetite, ilmenite, pyrite, and plagioclase; б — replacement of late-magmatic low-Ti amphibole with quartz, ilmenite, and high-Ti amphibole aggregate; в — composite magnetite-pyrite inclusion with ilmenite and quartz in late-magmatic amphibole; г — inclusions of apatite, magnetite, ilmenite, and actinolite in late-magmatic amphibole; д — pyrrhotite inclusion in magmatic high-Al amphibole (Amp1) in association with low-Al amphibole, Co-bearing pyrite, and Cr-bearing magnetite; е — pyrite inclusion in association with pyrrhotite, native iron and chlorargyrite composite with native silver in actinolite. BSE images.

Download (56KB)
8. Fig. 7. Microinclusions of silver and bismuth chlorides in igneous rocks from the Dunitovy area of the Lucha intrusion: а — composite microinclusion of silver chloride and native silver in plagioclase; б, в — bismoclite microinclusions in plagioclase (б) and amphibole (в). BSE images.

Download (13KB)
9. Fig. 8. Silver sulfide miciroinclusions in igneous rocks from the Dunitovy area of the Lucha intrusion: а — acanthite microaggregate underlain by iron and copper oxides in aphibole-orthopyroxene matrix; б — aggregate of platy acanthite micrograins in biotite; в — acanthite microinclusion in amphibole-plagioclase matrix; г — acanthite microinclusion at the contact between corundum and amphibole grains; д — aggregate of acanthite micrograins in quartz-amphibole; е — aggregate of idiomorphic acanthite micrograins underlain by iron and copper oxides in amphibole. BSE images.

Download (42KB)
10. Fig. 9. Microinclusions of iron, lead, zinc, molybdenum and arsenic sulfides in igneous rocks from the Dunitovy area of the Lucha intrusion: а–в — galena microinclusions in amphibole (а), biotite (б), and plagioclase (в); г — sphalerite microinclusion in quartz-calcite matrix; д — molybdenite microinclusion in amphibole-plagioclase matrix; е — arsenopyrite microinclusion in quartz-calcite matrix. BSE images.

Download (32KB)
11. Fig. 10. Variations of sulfur isotopes in IOCG and IOA deposits, oceanic island basalts and sedimentary pyrite (Hammerli et al., 2021), freshwater and modern marine sulfates (Rojas et al., 2018). The range of δ34S in magmatic rocks («mantle» sulfur) and variations of δ34S in Mantoverde, Diego de Almagro, Candelaria, Alcaparra, El Laco, Cerro Negro Norte and El Romeral IOCG-IOA deposits after (Rojas et al., 2018), Olympic Dam IOCG deposit after (Schlegel et al., 2017), sulfides from the Ildeus and Lucha intrusions after (Buchko et al., 2002).

Download (26KB)

Copyright (c) 2025 Russian academy of sciences