Characteristics of m. Psoas minor and m. Sacrocaudalis (coccygeus) dorsalis lateralis in simultaneous modeling of lateral interbodial spinnylodesis and posterior sacro-iliac joint arthodesis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Simultaneous surgical interventions on the spine with the use of high-tech instruments and minimally invasive access techniques allow to eliminate several problems all at once, to activate patients at an early date and to reduce the number of complications.

AIM: To evaluate morphological changes to evaluate morphological changes in the m. Psoas minor and m. Sacrocaudalis dorsalis lateralis during simultaneous modeling of lateral interbody fusion and posterior sacroiliac joint arthrodesis

MATERIALS AND METHODS: Experiments were carried out on 14 outbred dogs; 3 animals formed a control group. The animals underwent consecutive lateral interbody fusion of the lumbar spine and posterior arthrodesis of the sacroiliac joint. The lumbar spine and sacroiliac joint were stabilized with external fixation device. Paraffin sections of muscles were stained with hematoxylin-eosin, according to Van Gieson, and Masson. Biochemical analysis of blood serum was performed during the experiment.

RESULTS: The morphological study of the muscles revealed pathohistological features such as an increase in the variety of myosymplast diameters, loss of their profiles polygonality, massive fibers fatty degeneration, endo- and perimysial fibrosis, sclerotization of vessel membranes, obliteration of their lumens. At the end of the experiment, the degree of the small lumbar muscle fibrosis was 161% and of the sacrocaudal dorsal lateral muscle fibrosis was 240% of the control parameters (p < 0.05); the rate of the muscle fatty infiltration was 339 and 310% of the normal value, respectively. The sacroiliac-caudal dorsal lateral muscle underwent more marked changes, especially in the early stages of the experiment. A significant increase in the enzymes activity, skeletal muscle damage markers was detected on the 14th day after surgery.

CONCLUSION: Simultaneous surgical interventions on the spine should minimize mechanical effects on the paravertebral muscles and use techniques to stimulate their function in the postoperative period, which will reduce the processes of fibrogenesis and fat involution as well as provide an overall shorter rehabilitation period for the target patients.

Full Text

Restricted Access

About the authors

Galina N. Filimonova

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Author for correspondence.
Email: galnik.kurgan@yandex.ru
ORCID iD: 0000-0003-0683-9758

Cand. Sci. (Biol.), Senior Research Associate

Russian Federation, Kurgan

Olga V. Diuriagina

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Email: diuriagina@mail.ru
ORCID iD: 0000-0001-9974-2204
SPIN-code: 8301-1475

Cand. Sci. (Vet.), Head of the Experimental Laboratory

Russian Federation, Kurgan

Nikolai I. Antonov

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Email: aniv-niko@mail.ru
SPIN-code: 3754-7508
Scopus Author ID: 55207639900

Cand. Sci. (Biol.), Research Associate

Russian Federation, Kurgan

Maxim V. Stogov

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Email: Stogo_off@list.ru
ORCID iD: 0000-0001-8516-8571
SPIN-code: 9345-8300

Dr. Sci. (Biol.), Assistant Professor, Head of the Department of Preclinical and Laboratory Research

Russian Federation, Kurgan

Sergei O. Ryabykh

Priorov National Medical Research Center of Traumatology and Orthopedics

Email: RyabykhSO@cito-priorov.ru
ORCID iD: 0000-0002-8293-0521
SPIN-code: 6382-1107

MD, Dr. Sci. (Med.), Deputy Director for Projects, Education and Communication

Russian Federation, Moscow

Natalia V. Tushina

Ilizarov National Medical Research Center of Traumatology and Orthopedics

Email: ntushina76@mail.ru
ORCID iD: 0000-0002-1322-608X
SPIN-code: 7554-9130

Cand. Sci. (Biol.), Research Associate

Russian Federation, Kurgan

References

  1. Patel K, Tajsic T, Budohoski KP, et al. Simultaneous navigated cervico-thoracic and thoraco-lumbar fixation. Eur Spine J. 2018;27(3):318–322. doi: 10.1007/s00586-017-5233-1
  2. Bari MM, Islam S, Shetu NH, Rahman M. Orthopedic control of injuries in polytrauma. Genij Ortopedii. 2017;23(3):351–353. doi: 10.18019/1028-4427-2017-23-3-351-35
  3. Wang HW, Hu YC, Wu ZY, et al. One approach anterior decompression and fixation with posterior unilateral pedicle screw fixation for thoracolumbar osteoporotic vertebral compression fractures. Orthop Surg. 2021;13(3):908–919. doi: 10.1111/os.12947
  4. Byvaltsev VA, Kalinin AA, Ryabykh SO, et al. Simultaneous surgical interventions in spinal neurosurgery: a systematic review. Genij Orthopedii. 2020;26(2):275–281. (In Russ). doi: 10.18019/1028-4427-2020-26-2-275-281
  5. Li Y, Du Y, Ji A, et al. The Clinical Effect of Manual Reduction Combined with Internal Fixation Through Wiltse Paraspinal Approach in the Treatment of Thoracolumbar Fracture. Orthop Surg. 2021;13(8):2206–2215. doi: 10.1111/os.13090
  6. Moulin B, Tselikas L, Gravel G, et al. Safety and Efficacy of Multilevel Thoracolumbar Vertebroplasty in the Simultaneous Treatment of Six or More Pathologic Compression Fractures. J Vasc Interv Radiol. 2020;31(10):1683–1689.e1. doi: 10.1016/j.jvir.2020.03.011
  7. Klimov VS, Vasilenko II, Evsyukov AV, et al. The use of LLIF technology in adult patients with degenerative scoliosis: retrospective cohort analysis and literature review. Genij Ortopedii. 2018;24(3):393–403. (In Russ). doi: 10.18019/1028-4427-2018-24-3-393-403
  8. Lorio M, Kube R, Araghi A. International Society for the Advancement of Spine Surgery Policy 2020 Update-Minimally Invasive Surgical Sacroiliac Joint Fusion (for Chronic Sacroiliac Joint Pain): Coverage Indications, Limitations, and Medical Necessity. Int J Spine Surg. 2020;14(6):860–895. doi: 10.14444/7156
  9. Ladd B, Polly Jr D. Pelvic Fixation Using S2AI and Triangular Titanium Implants (Bedrock Technique). World Neurosurg. 2021;154:2. doi: 10.1016/j.wneu.2021.07.027
  10. Panico M, Chande RD, Lindsey DP et al. Innovative sacropelvic fixation using iliac screws and triangular titanium implants. Eur Spine J. 2021;30(12):3763–3770. doi: 10.1007/s00586-021-07006-9
  11. Rainov NG, Schneiderhan R, Heidecke V. Triangular titanium implants for sacroiliac joint fusion. Eur Spine J. 2019;28(4):727–734. doi: 10.1007/s00586-018-5860-1
  12. Dale M, Evans J, Carter K, et al. iFuse Implant System for Treating Chronic Sacroiliac Joint Pain: A NICE Medical Technology Guidance. Appl Health Econ Health Policy. 2020;18(3):363–373. doi: 10.1007/s40258-019-00539-7
  13. Novák V, Wanek T, Hrabálek L, Stejskal P. [Minimally Invasive Sacroiliac Joint Stabilization]. Acta Chir Orthop Traumatol Cech. 2021;88(1):35–38.
  14. Han G, Zou D, Liu Z, et al. Paraspinal muscle characteristics on MRI in degenerative lumbar spine with normal bone density, osteopenia and osteoporosis: a case-control study. BMC Musculoskelet Disord. 2022;23(1):73. doi: 10.1186/s12891-022-05036-y
  15. He K, Head J, Mouchtouris N, et al. The Implications of Paraspinal Muscle Atrophy in Low Back Pain, Thoracolumbar Pathology, and Clinical Outcomes After Spine Surgery: A Review of the Literature. Global Spine J. 2020;10(5):657–666. doi: 10.1177/2192568219879087
  16. Khan AB, Weiss EH, Khan AW, et al. Back Muscle Morphometry: Effects on Outcomes of Spine Surgery. World Neurosurg. 2017;103:174–179. doi: 10.1016/j.wneu.2017.03.097
  17. Jermy JE, Copley PC, Poon MTC, Demetriades AK. Does pre-operative multifidus morphology on MRI predict clinical outcomes in adults following surgical treatment for degenerative lumbar spine disease? A systematic review. Eur Spine J. 2020;29(6):1318–1327. doi: 10.1007/s00586-020-06423-6
  18. Stevens S, Agten A, Timmermans A, Vandenabeele F. Unilateral changes of the multifidus in persons with lumbar disc herniation: a systematic review and meta-analysis. Spine J. 2020;20(10): 1573–1585. doi: 10.1016/j.spinee.2020.04.007
  19. Filimonova GN, Dyuryagina OV, Antonov NI, Ryabykh SO. Characteristics of the psoas minor in modeling lateral interbody fusion of the lumbar spine. N.N. Priorov Journal of Traumatology and Orthopedics. 2022;29(1):47–56. (In Russ). doi: 10.17816/vto90775
  20. Gajdyshev IP. Modelirovanie stohasticheskih i determinirovannyh sistem: Rukovodstvo pol’zovatelya programmy AtteStat. Kurgan, 2015. 484 p. Available from: http://xn--80aab2abao2a1acibc.xn--p1ai/files/AtteStat_Manual_15.pdf. Accessed: 14.03.2023. (In Russ).
  21. Chen W, Datzkiw D, Rudnicki MA. Satellite cells in ageing: use it or lose it. Open Biol. 2020;10(5):200048. doi: 10.1098/rsob.200048
  22. Giza S, Mojica-Santiago JA, Parafati M, et al. Microphysiological system for studying contractile differences in young, active, and old, sedentary adult derived skeletal muscle cells. Aging Cell. 2022;21(7):e13650. doi: 10.1111/acel.13650
  23. Ding JZ, Kong C, Li XY, et al. Different degeneration patterns of paraspinal muscles in degenerative lumbar diseases: a MRI analysis of 154 patients. Eur Spine J. 2022;31(3):764–773. doi: 10.1007/s00586-021-07053-2
  24. Вok DH, Kim J, Kim TH. Comparison of MRI-defined back muscles volume between patients with ankylosing spondylitis and control patients with chronic back pain: age and spinopelvic alignment matched study. Eur Spine J. 2017;26(2):528–537. doi: 10.1007/s00586-016-4889-2
  25. Yang Q, Yan D, Wang L, et al. Muscle fat infiltration but not muscle cross-sectional area is independently associated with bone mineral density at the lumbar spine. Br J Radiol. 2022;95(1134):20210371. doi: 10.1259/bjr.20210371
  26. Li X, Xie Y, Lu R, et al. Relationship between oseteoporosis with fatty infiltration of paraspinal muscles based on QCT examination. J Bone Miner Metab. 2022;40(3):518–527. doi: 10.1007/s00774-022-01311-z
  27. Zhao Y, Huang M, Serrano-Sosa M, et al. Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos. 2019;14(1):99. doi: 10.1007/s11657-019-0639-5
  28. Koichubekov АA. The integrated approach to restorative treatment of patients with degenerative diseases of the lumbar spine after anterior spondylodesis. Vestnik Kyrgyzsko-Rossijskogo Slavânskogo Universiteta. 2018;18(2):59–63. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig 1. Surgical field: а — titanium cage between the sacrum and the wings of the ilium of the lumbar vertebrae; b — the position of the cages in the sacroiliac joints (sacrum).

Download (180KB)
3. Fig. 2. Histostructure of m. psoas minor (а) and m. sacrocaudalis (coccygeus) dorsalis lateralis (b) in control: polygonal fiber profiles, minimum endomysium; а — neuromuscular spindle; (b) vessel in perimysium without signs of pathology. Fragments of paraffin sections, stained with hematoxylin-eosin; magnification ×400.

Download (231KB)
4. Fig. 3. Histostructure of the psoas minor (a, b) and the sacro-caudal (coccygeal) dorsal lateral muscle (c) after 6 months of the experiment: a, c — variability in the size of myosymplasts, endomysial fibrosis, adipocytes in bundles of muscle fibers; b — arterial vessel with severe fibrosis of the adventitial and middle membranes, impaired circular orientation of the smooth muscle cells, obliteration of the lumen. Fragments of paraffin sections; hematoxylin-eosin stain; magnification ×400.

Download (206KB)
5. Fig. 4. Histostructure of m. psoas minor (а) and m. sacrocaudalis (coccygeus) dorsalis lateralis (b, c) after 12 months of the experiment: а — polygonal profiles of myosymplasts, minimum endomysium; b — variability in muscle fiber diameters, internal nuclei, an area of significant fibrosis of the interstitial tissue (on the right); c — a bundle of muscle fibers replaced by adipocytes; to the right, an area of fibrosis. Fragments of paraffin sections, stained with hematoxylin-eosin, magnification ×400.

Download (293KB)
6. Fig. 5. Histostructure of the psoas minor (a, b) and m. sacrocaudalis dorsalis lateralis (c, d) after 18 months of the experiment: a — myocytes of various profiles and diameters, a group of adipocytes in the muscle bundle (top), a fragment of fibrosis with residual angular muscle fibers (bottom); b — neuromuscular spindles of normal structure and with an enlarged connective tissue capsular; c — polygonal fiber profiles, endomysial fibrosis; d — adipocytes that replaced part of the muscle fibers in the bundle, ischemic fibers are colored blue, fields of adipocytes. Fragments of paraffin sections, stained with hematoxylin-eosin, according to Masson (d); magnification ×400.

Download (262KB)

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies