Experience of use of the individual cutting block «5 in 1» using total knee arthroplasty

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Total knee arthroplasty is the most progressively developing direction in the modern orthopaedic world. With the new visualization technologies, a whole new field of computer-assisted orthopaedic surgery has emerged. Generally, three groups can be distinguished in computer-assisted orthopedic surgery. The 1st group — the use of individual resection blocks, templates or guides — remains the most relevant today. However, the use of currently existing individual resection blocks, according to the literature, has contradictory results.

CLINICAL CASES DESCRIPTION: This work presents the author's developed technique of a new preoperative 3D modeling for total knee arthroplasty using individual resection blocks. The paper presents a clinical case demonstrating the effectiveness of the new technique.

CONCLUSION: The strategy CT+MRI, in our opinion, is the optimal solution not only for competent preoperative planning of total knee arthroplasty, but also for designing individual resection blocks. Our individual resection blocks allowed us to improve the accuracy of total knee arthroplasty.

Full Text

Restricted Access

About the authors

Anastasia V. Filippova

North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: dr.anastasia3d@gmail.com
ORCID iD: 0000-0001-9417-9563
SPIN-code: 7419-3814

Assistant to the President of the University; Traumatologist-Orthopedist; Specialist in 3D Technologies

Russian Federation, St. Petersburg

Otari G. Khurtsilava

North-Western State Medical University named after I.I. Mechnikov

Email: rectorat@szgmu.ru
ORCID iD: 0000-0002-7199-671X

MD, Dr. Sci. (Med.), Professor, the President of the University

Russian Federation, St. Petersburg

Dmitrii A. Ptashnikov

North-Western State Medical University named after I.I. Mechnikov; Russian Scientific Research Institute of Travmatology and Orthopedics named after R.R. Vreden

Email: drptashnikov@yandex.ru
ORCID iD: 0000-0001-5765-3158
SPIN-code: 7678-6542

MD, Dr. Sci. (Med.), Professor; Head of the Department of Traumatology, Orthopedics and Military Surgery

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Docquier PL, Paul L, TranDuy K. Surgical navigation in paediatric orthopaedics. EFORT Open Rev. 2017;1(5):152–159. doi: 10.1302/2058-5241.1.000009
  2. Sugano N. Computer-assisted orthopedic surgery. J Orthop Sci. 2003;8(3):442–8. doi: 10.1007/s10776-002-0623-6
  3. Kubicek J, Tomanec F, Cerny M, Vilimek D, Kalova M, Oczka D. Recent Trends, Technical Concepts and Components of Computer-Assisted Orthopedic Surgery Systems: A Comprehensive Review. Sensors (Basel). 2019;19(23):5199. doi: 10.3390/s19235199
  4. Wang Z, Jiang M, Gu H. Understanding and analysis of CAOS development in context: the case of China. Int J Med Robot. 2008;4(3):252–7. doi: 10.1002/rcs.204
  5. DiGioia AM 3rd, Nolte LP. The challenges for CAOS: what is the role of CAOS in orthopaedics? Comput Aided Surg. 2002;7(3):127–8. doi: 10.1002/igs.10043
  6. Nolte LP, Beutler T. Basic principles of CAOS. Injury. 2004;35(1):16. doi: 10.1016/j.injury.2004.05.005
  7. Langlotz F. Potential pitfalls of computer aided orthopedic surgery. Injury. 2004;35(1):23. doi: 10.1016/j.injury.2004.05.006
  8. Schmucki D, Gebhard F, Grützner PA, Hüfner T, Langlotz F, Zheng G. Computer aided reduction and imaging. Injury. 2004;35(1):104. doi: 10.1016/j.injury.2004.05.017
  9. Gebhard F, Krettek C, Hüfner T. Computer aided orthopedic surgery (CAOS) — a rapidly evolving technology. Injury. 2004;35(1):S–A1. doi: 10.1016/j.injury.2004.05.003
  10. Zheng G, Nolte LP. Computer-Aided Orthopaedic Surgery: State-of-the-Art and Future Perspectives. Adv Exp Med Biol. 2018;(1093):1–20. doi: 10.1007/978-981-13-1396-7_1
  11. Jenny JY. The history and development of computer assisted orthopaedic surgery. Orthopade. 2006;35(10):1038–42. doi: 10.1007/s00132-006-0994-y
  12. Hampp EL, Sodhi N, Scholl L, et al. Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach: A blinded assessment. Bone Joint Res. 2019;8(10):495–501. doi: 10.1302/2046-3758.810.BJR-2019-0129.R1
  13. Hepinstall MS, Sodhi N, Ehiorobo JO, Hushmendy S, Mont MA. Robotic-arm assisted total hip arthroplasty. Ann Transl Med. 2018;6(22):433. doi: 10.21037/atm.2018.10.37
  14. Sultan AA, Piuzzi N, Khlopas A, Chughtai M, Sodhi N, Mont MA. Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Rev Med Devices. 2017;14(12):925–927. doi: 10.1080/17434440.2017.1392237
  15. Kulyaba TA. Pervichnoye total’noye endoprotezirovaniye kolennogo sustava [Primary total knee arthroplasty]. Kiev: Osnova; 2019. 166–170 p. (in Russ).
  16. Mattei L, Pellegrino P, Calò M, Bistolfi A, Castoldi F. Patient specific instrumentation in total knee arthroplasty: a state of the art. Ann Transl Med. 2016;4(7):126. doi: 10.21037/atm.2016.03.33
  17. Birnbaum K, Schkommodau E, Decker N, Prescher A, Klapper U, Radermacher K. Computer-assisted orthopedic surgery with individual templates and comparison to conventional operation method. Spine. 2001;26(4):365–70. doi: 10.1097/00007632-200102150-00012
  18. Radermacher K, Portheine F, Anton M, Zimolong A, Kaspers G, Rau G, Staudte HW. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop Relat Res. 1998;(354):28–38. doi: 10.1097/00003086-199809000-00005
  19. Wautier D, Thienpont E. Changes in anteroposterior stability and proprioception after different types of knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1792–1800. doi: 10.1007/s00167-016-4038-9
  20. Harold RE, Macleod J, Butler BA, et al. Single-Use Custom Instrumentation in Total Knee Arthroplasty: Effect on In-Hospital Complications, Length of Stay, and Discharge Disposition. Orthopedics. 2019;42(5):299–303. doi: 10.3928/01477447-20190403-03
  21. Voleti PB, Hamula MJ, Baldwin KD, Lee GC. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29(9):1709–12. doi: 10.1016/j.arth.2014.01.039
  22. Filippova AV, Khurtsilava OG, Ptashnikov DA. Virtual protocol in preoperative planning of total knee arthroplasty. Modern problems of science and education. Surgery. 2023;(3). Available from: https://science-education.ru/ru/article/view?id=32658. (in Russ). doi: 10.17513/spno.32658

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Magnetic Resonance Imaging data of patient T.

Download (75KB)
3. Fig. 2. Performing a distal cut of the femoral condyles.

Download (146KB)
4. Fig. 3. Fixing the second individual resection block on the tibial condyles.

Download (133KB)
5. Fig. 4. Checking the axis, estimating the balance of the ligamentous apparatus and the size of the future liner.

Download (103KB)
6. Fig. 5. Inserting the instrument — the guide of the saw blade — into the slot of the individual resection block to perform the anterior cut of the femoral condyle.

Download (145KB)
7. Fig. 6. Performing a posterior cut of the femoral condyle.

Download (137KB)
8. Fig. 7. Performing oblique cuts of the femoral condyle.

Download (120KB)
9. Fig. 8. Knee joint after all cuts.

Download (151KB)
10. Fig. 9. Checking the quality of the performed femoral condyles.

Download (153KB)
11. Fig. 10. Installed components of the knee endoprosthesis.

Download (119KB)
12. Fig. 11. Radiographs of patient T. in frontal projection: a — before surgical treatment, b — after surgical treatment.

Download (68KB)
13. Fig. 12. Radiographs of patient T. in lateral projection: a — before surgical treatment, b — after surgical treatment.

Download (92KB)
14. Fig. 13. Virtual models of the removed bone and cartilage fragments of the condyles of the knee joint after surgical treatment.

Download (70KB)
15. Fig. 14. Comparison of the actual versus expected results using the distal femoral cut: a — postoperative CT scan; b — the expected result of virtual preoperative planning.

Download (70KB)

Copyright (c) 2023 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies