Potentialities of diffusion weighted MRI in the assessment of the degree of adjacent intervertebral disc degeneration: rigid lumbosacral stabilization and total intervertebral disc arthroplasty


Purpose: to evaluate the condition of adjacent intervertebral discs (IVD) after single level rigid lumbosacral stabilization and total arthroplasty by calculating IVD height index and apparent diffusion coefficient (ADC). Patients and methods. The study included 117 patients (64 women and 53 men) after rigid lumbosacral stabilization or total arthroplasty of the degenerative IVD at L5-S1 level. Values of ADC and height of the adjacent IVD were assessed prior to surgery, at discharge and in 6, 12, 24 and 36 months after surgical intervention. Results. The value of the height of the adjacent IVD in patients after rigid stabilization in the early postoperative period averaged 0.58±0.046, in 6 months - 0.58±0.044 and 0.52±0.037 in 36 months after surgery. In patients after total arthroplasty it made up 0.59±0.041, 0.60±0.038 and 0.56±0.02, respectively. Comparison of the adjacent IVD height indices showed significant difference starting from the 12th observation months (p<0.05). In group of patients after rigid stabilization the value of ADC made up 1547.7±231.4 mm2/s in the early postoperative period, 1314.5±117.9 mm2/s in 6 months and 1189.3±117.9 mm2/s in 36 months after surgery. In patients after total arthroplasty it was 1539.7±228.9 mm2/s, 1477.3±245.1 mm2/s and 1334.5±217.6 mm2/s, respectively. Statistically significant difference in ADC values between 2 groups of patients was noted in 6 months after surgery and later (p<0.05). Conclusion. Diffusion weighted MRI with ADC calculation is a modern noninvasive diagnostic method for early stages of adjacent IVD degeneration. In contrast to rigid lumbosacral stabilization, total IVD arthro- plasty enables to delay slightly the degeneration of segments adjacent to the operated level.

Full Text

Restricted Access

About the authors

Vadim A. Byval’tsev

Irkutsk Scientific Center of Surgery and Traumatology

Email: byval75vadim@yandex.ru
Irkutsk, Russia
Dr. med. sci., Head of scientific-clinical department of neurosurgery and orthopaedics of ISCST; Head of Chair of neurosurgery of ISMU; Prof., ISMAPE Chair of traumatology, orthopaedics and neurosurgery. http://orcid.org/0000-0003-4349-7101, SPIN-код: 5996-6477.

I. A Stepanov

Irkutsk State Medical university

Irkutsk, Russia

Yu. Ya Pestryakov

Irkutsk State Medical university

Irkutsk, Russia


  1. Belykh E., Krutko A.V., Baykov E.S. et al. Preoperative estimation of disc herniation recurrence after micro- discectomy: predictive value of a multivariate model based on radiographic parameters. Spine J. 2017; 17 (3): 390-400. doi: 10.1016/j.spinee.2016.10.011.
  2. Abbasi H., Abbasi A. Oblique lateral lumbar interbody fusion (OLLIF): technical notes and early results of a single surgeon comparative study. Cureus. 2015; 7: e351. doi: 10.7759/cureus.351.
  3. Yang Y., Hong Y., Liu H. et al. Comparison of clinical and radiographic results between isobar posterior dynamic stabilization and posterior lumbar inter-body fusion for lumbar degenerative disease: A four-year retrospec- tive study. Clin. Neurol. Neurosurg. 2015; 136: 100-6. doi: 10.1016/j.clineuro.2015.06.003.
  4. Korovessis P., Koureas G., Zacharatos S. et al. Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur. Spine J. 2005; 14 (7): 630-8.
  5. Soh J., Lee J.C., Shin B.J. Analysis of risk factors for adjacent segment degeneration occurring more than 5 years after fusion with pedicle screw fixation for degenerative lumbar spine. Asian Spine J. 2013; 7 (4): 273-81. doi: 10.4184/asj.2013.7.4.273.
  6. Schmoelz W., Erhart S., Unger S. et al. Biomechanical evaluation of a posterior non-fusion instrumentation of the lumbar spine. Eur. Spine J. 2012; 21 (5): 939-45. doi: 10.1007/s00586-011-2121-y.
  7. Mattei T.A., Beer J., Teles A.R. et al. Clinical outcomes of total disc replacement versus anterior lumbar inter- body fusion for surgical treatment of lumbar degenerative disc disease. Global Spine J. 2017; 7 (5): 452-9. doi: 10.1177/2192568217712714.
  8. Chou W.Y., Hsu C.J., Chang W.N. et al. Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Arch. Orthop. Trauma Surg. 2002; 122: 39-43.
  9. Kumar M., Baklanov A., Chopin D. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur. Spine J. 2001; 10: 314-9.
  10. Kim K.H., Lee S.H., Shim C.S. et al. Adjacent segment disease after interbody fusion and pedicle screw fixations for isolated L4-L5 spondylolisthesis: a minimum five- year follow-up. Spine (Phila Pa 1976). 2010; 9: 625-34.
  11. Cunningham B.W., Dmitriev A.E., Hu N. General principles of total disc replacement arthroplasty: seventeen cases in a nonhuman primate model. Spine (Phila Pa 1976). 2003; 28: 118-24.
  12. Belykh E., Kalinin A.A., Patel A.A. et al. Apparent diffusion coefficient maps in the assessment of surgical patients with lumbar spine degeneration. PloS One. 2017; 12 (8): e0183697. doi: 10.1371/journal.pone.0183697.
  13. Бывальцев В.А., Колесников С.И., Белых Е.Г. и др. Комплексный анализ диффузионного транспорта и микроструктуры межпозвонкового диска. Бюллетень экспериментальной биологии и медицины. 2017; 164 (8): 255-61.
  14. Kim K.T., Park S.W., Kim Y.B. Disc height and segmental motion as risk factors for recurrent lumbar disc herniation. Spine (Phila Pa 1976). 2009; 34 (24): 2674-8. doi: 10.1097/BRS.0b013e3181b4aaac.
  15. Williams J.R. The Declaration of Helsinki and public health. Bull. World Health Organ. 2008; 86 (8): 650-2.
  16. Ghiselli G., Wang J.C., Bhatia N.N. et al. Adjacent segment degeneration in the lumbar spine. J. Bone Joint Surg. Am. 2004; 86-A (7): 1497-1503.
  17. Bydon M., Macki M., De la Garza-Ramos R. et al. Incidence of adjacent segment disease requiring reoperation after lumbar laminectomy without fusion: a study of 398 patients. Neurosurgery. 2016; 78 (2): 192-9. doi: 10.1227/ NEU.0000000000001007.
  18. Lu S., Hai Y., Kong C. et al. An 11-year minimum follow- up of the Charite III lumbar disc replacement for the treatment of symptomatic degenerative disc disease. Eur. Spine J. 2015; 24 (9): 2056-64. doi: 10.1007/s00586-015-3939-5.
  19. Siepe C.J., Heider F., Wiechert K. et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J. 2014; 14 (8): 1417-31. doi: 10.1016/j.spinee.2013.08.028.
  20. Ou C.Y., Lee T.C., Lee T.H. et al. Impact of body mass index on adjacent segment disease after lumbar fusion for degenerative spine disease. Neurosurgery. 2015; 76 (4): 396-401. doi: 10.1227/NEU.0000000000000627.
  21. Wang H., Ma L., Yang D. et al. Incidence and risk factors of adjacent segment disease following posterior decompression and instrumented fusion for degenerative lumbar disorders. Medicine (Baltimore). 2017; 96 (5): e6032. doi: 10.1097/MD.0000000000006032.
  22. Liang J., Dong Y., Zhao H. Risk factors for predicting symptomatic adjacent segment degeneration requir- ing surgery in patients after posterior lumbar fusion. J. Orthop. Surg Res. 2014; 9: 97. doi: 10.1186/s13018-014-0097-0.
  23. Бывальцев В.А., Белых Е.Г., Степанов И.А. и др. Цитокиновые механизмы дегенерации межпозвонкового диска. Сибирский медицинский журнал. 2015; 6: 5-11.
  24. Kim H.J., Kang K.T., Chun H.J. et al. The influence of intrinsic disc degeneration of the adjacent segments on its stress distribution after onelevel lumbar fusion. Eur. Spine J. 2015; 24 (4): 827-37. doi: 10.1007/s00586-014-3462-0.
  25. Cheh G., Bridwell K.H., Lenke L.G. et al. Adjacent segment disease following lumbar/thoracolumbar fusion with pedicle screw instrumentation: a minimum 5-year follow-up. Spine (Phila Pa 1976). 2007; 32: 2253-7.
  26. Guigui P., Wodecki P., Bizot P. et al. Long-term influence of associated arthrodesis on adjacent segments in the treatment of lumbar stenosis: a series of 127 cases with 9- year follow-up. Rev. Chir. Orthop. Reparatrice Appar. Mot. 2000; 86 (6): 546-57 (in French).
  27. Axelsson P., Johnsson R., Strömqvist B. The spondylolytic vertebra and its adjacent segment. Mobility measured before and after posterolateral fusion. Spine (Phila Pa 1976). 1997; 22 (4): 414-7.
  28. Bjarke C.F., Stender H.E., Laursen M. et al. Long-term functional outcome of pedicle screw instrumentation as a support for posterolateral spinal fusion: randomized clinical study with a 5-year follow-up. Spine (Phila Pa 1976). 2002; 27 (12): 1269-77.
  29. Fritzell P., Hagg O., Wessberg P. et al. Chronic low back pain and fusion: a comparison of three surgical techniques: a prospective multicenter randomized study from the Swedish lumbar spine study group. Spine (Phila Pa 1976). 2002; 27 (11): 1131-41.
  30. Fairbank J., Frost H., Wilson-MacDonald J. Randomised controlled trial to compare surgical stabilisation of the lumbar spine with an intensive rehabilitation programme for patients with chronic low back pain: the MRC spine stabilisation trial. BMJ. 2005; 330 (7502): 1233.
  31. Park S.J., Kang K.J., Shin S.K. et al. Heterotopic ossifica- tion following lumbar total disc replacement. Int. Orthop. 2011; 35 (8): 1197-201. doi: 10.1007/s00264-010-1095-4.
  32. Frelinghuysen P., Huang R.C., Girardi F.P., Cammi- sa F.P. Jr. Lumbar total disc replacement part I: rationa- le, biomechanics, and implant types. Orthop. Clin. North Am. 2005; 36 (3): 293-9. doi: 10.1016/j.ocl.2005.02.014.
  33. Fernstrom U. Arthroplasty with intercorporal endopro- thesis in herniated disc and in painful disc. Acta Chir. Scand. Suppl. 1966; 357: 154-9.
  34. Siepe C.J., Mayer H.M., Wiechert K., Korge A. Clinical results of total lumbar disc replacement with ProDisc II: three-year results for different indications. Spine (Phila Pa 1976). 2006; 31 (17): 1923-32. doi: 10.1097/01. brs.0000228780.06569.e8.
  35. Pfirrmann C., Metzdorf A., Zanetti M. et al. Magnetic resonance classification of lumbar intervertebral disc de- generation. Spine (Phila Pa 1976). 2001; 26 (17): 1873-8.
  36. Li Z., Li F., Yu S. et al. Two-year follow-up results of the Isobar TTL Semi-Rigid Rod System for the treatment of lumbar degenerative disease. J. Clin. Neurosci. 2012; 20 (3): 394-9. doi: 10.1016/j.jocn.2012.02.043.
  37. Noriega D.C., Marcia S., Ardura F. et al. Diffusion- weighted MRI assessment of adjacent disc degeneration after thoracolumbar vertebral fractures. Cardiovasc. Intervent. Radiol. 2016; 39 (9): 1306-14. doi: 10.1007/ s00270-016-1369-3.
  38. Giers M.B., Munter B.T., Eyster K.J. et al. biomechanical and endplate effects on nutrient transport in the inter- vertebral disc. World Neurosurg. 2017; 99: 395-402. doi: 10.1016/j.wneu.2016.12.041.
  39. Бывальцев В.А., Степанов И.А., Семенов А.В. и др. Возможности диагностики давности наступления смерти по изменениям в поясничных межпозвонковых дисках (сопоставление морфологических, иммуногистохимических и томографических результатов). Судебно-медицинская экспертиза. 2017; 60 (4): 4-8. doi: 10.17116/sudmed20176044-8.



Abstract - 31


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2017 Byval’tsev V.A., Stepanov I.A., Pestryakov Y.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies