Prospective for the development of infectious complications prevention methods after large joints arthroplasty


The review gives the characteristics of the general status of the problem of infection in the zone of surgical intervention including the field of traumatology and orthopaedics. The shortcomings of antibiotic use and methods of their local delivery for surgical and orthopaedic needs are considered. The conception of local use of antibacterial agents and the requirements for the current “ideal” antibacterial agent are given. Classification of the local antibiotic delivery systems on the basis of their physicochemical properties is presented as well as the number of prospective methods for the prevention of microorganisms’ adhesion on the surface of the implanted devices and systems that could be used in traumatology and orthopaedics are examined.

Full Text

Restricted Access

About the authors

Aleksandr G. Samokhin

Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after ya. l. Tsivyan

Novosibirsk, Russia
cand. med. sci., senior scientific worker, laboratory-experimental department, NNIITO named after Ya. L. Tsivyan

Yu. N Kozlova

Institute of Chemical Biology and fundamental Medicine

Novosibirsk, Russia

E. A Fyodorov

Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after ya. l. Tsivyan

Novosibirsk, Russia

V. V Pavlov

Novosibirsk Scientific Research Institute of Traumatology and Orthopedics named after ya. l. Tsivyan

Novosibirsk, Russia


  1. Lindeque B., Hartman Z., Noshchenko A., Cruse M. Infection after primary total hip arthroplasty. Orthopedics. 2014; 37 (4): 257-65. doi: 10.3928/01477447-20140401-08.
  2. Vanhegan I.S., Malik A.K., Jayakumar P. et al. A financial analysis of revision hip arthroplasty: the economic burden in relation to the national tariff. J. Bone Joint. Surg. Br. 2012; 94 (5): 619-23. doi: 10.1302/0301-620X.94B5.27073.
  3. Ефименко Н.А., Гучев И.А., Сидоренко С.В. Инфекции в хирургии. Фармакотерапия и профилактика. Смоленск; 2004.
  4. Berríos-Torres S.I., Umscheid C.A., Bratzler D.W. et al. Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg. 2017; 152 (8): 784-91. doi: 10.1001/jamasurg.2017.0904.
  5. Shohat N., Parvizi J. Prevention of periprosthetic joint infection: examining the recent Guidelines. J. Arthroplasty. 2017; 32 (7): 2040-6. doi: 10.1016/j.arth.2017.02.072.
  6. Павлов В.В. Прогнозирование, профилактика, диагностика и лечение инфекционных осложнений при эндопротезировании тазобедренного сустава: Автореф. дис. … д-ра мед. наук; Новосибирск; 2008.
  7. Wodtke J., Löhr J.F. The infected implant. Orthopade. 2008; 37 (3): 257-67, 268-9. doi: 10.1007/s00132-008-1216-6.
  8. Diefenbeck M., Mückley T., Hofmann G.O. Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury. 2006; 37: 95-104. doi: 10.1016/j. injury. 2006.04.015.
  9. Wachol-Drewek Z., Pfeiffer M., Scholl E. Comparative investigation of drug delivery of collagen implants saturated in antibiotic solutions and a sponge containing gentamicin. Biomaterials. 1996; 17 (17): 1733-8.
  10. Mehta S., Humphrey J.S., Schenkman D.I. et al. Gentamicin distribution from a collagen carrier. J. Orthop. Res. 1996; 14: 749-54. doi: 10.1002/jor.1100140511.
  11. Sørensen T.S., Sørensen A.I., Merser S. Rapid release of gentamicin from collagen sponge. In vitro comparison with plastic beads. Acta. Orthop. Scand. 1990; 61 (4): 353-6.
  12. Neut D., van de Belt H., Stokroos I. et al. Biomaterial- associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J. Antimicrob. Chemother. 2001; 47 (6): 885-91.
  13. Zweymüller K. 15 Jahre Zweymuller-Huftendoprothese. III Wiener Symposium. Karl Zweymüller (Hrsg.), 1, Aufl., Bern.; Göttingen; Toronto; Seattle: Huber; 1996: 212.
  14. Schiavone Panni A., Corona K., Giulianelli M. et al. Antibiotic-loaded bone cement reduces risk of infections in primary total knee arthroplasty? A systematic review. Knee. Surg. Sports. Traumatol. Arthrosc. 2016; 24 (10): 3168-74. doi: 10.1007/s00167-016-4301-0.
  15. Jiang H., Manolache S., Wong A.C.L., Denes F.S. Plasma- enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science. 2004; 93 (3): 1411-22.
  16. Matsumoto T., Takahashi K. Physiologic factor in intractable bacterial infections. Nippon Rinsho. 1994; 52 (2): 315-21.
  17. Kienapfel H. The infected implant. In: Kienapfel H., Kühn K.D., eds. Heidelberg: Springer Medizin Verlag; 2009: 139.
  18. Witsø E., Engesaeter L.B. Revision of infected total hip prostheses in Norway and Sweden. Local antibiotics in arthroplasty. Stuttgart, New York: Thieme; 2007: 145-6.
  19. Trampuz A., Zimmerli W. Antimicrobial agents in orthopaedic surgery: Prophylaxis and treatment. Drugs. 2006; 66: 1089-105.
  20. Hanssen A. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin. Orthop. Relat. Res. 2005; 437: 91-6.
  21. Liu J.X., Werner J.A., Buza J.A. 3rd. et al. Povidone-iodine solutions inhibit cell migration and survival of osteoblasts, fibroblasts, and myoblasts. Spine (Phila Pa 1976). 2017; 12: 1757-62. doi: 10.1097/BRS.0000000000002224.
  22. Rezapoor M., Nicholson T., Tabatabaee R.M. et al. Povidone-iodine-based solutions for decolonization of nasal staphylococcus aureus: a randomized, prospective, placebo-controlled study. J. Arthroplasty. 2017; 32 (9): 2815-9. doi: 10.1016/j.arth.2017.04.039.
  23. Stemberger A., Schwabe J., Ibrahim K. et al. New antibiotic carriers and coatings in surgery. Local antibiotics in arthroplasty. State of the art from an interdisciplinary point of view. Stuttgart, New York: Thieme; 2007: 13-21.
  24. Swieringa A.J., Tulp N.J. Toxic serum gentamicin levels after use of gentamicin-loaded sponges in infected total hip arthroplasty. Acta. Orthop. 2005; 76: 75-7. doi: 10.1080/00016470510030355.
  25. Garvin K., Feschuk C. Polylactide-polyglycolide antibiotic implants. Clin. Orthop. Relat. Res. 2005; 437: 105-10.
  26. Li L.C., Deng J., Stephens D. Polyanhydride implant for antibiotic delivery - from the bench to the clinic. Adv. Drug. Deliv. Rev. 2002; 54 (7): 963-86.
  27. Nelson C.L., Hickmon S.G., Skinner R.A. Treatment of experimental osteomyelitis by surgical debridement and the implantation of biodegradable, polyanhydride-gen- tamicin beads. J. Orthop. Res. 1997; 17: 249-55.
  28. Teupe C., Meffert R., Winckler S. et al. Ciprofloxacin- impregnated poly-L-lactic acid drug carrier; New aspects of a resorbable drug delivery system in local antimicrobial treatment of bone infections. Arch. Orthop. Trauma. Surg. 1992; 112 (1): 33-5.
  29. Kim K., Luu Y.K., Chang C. et al. Incorporation and controlled release of a hydrofilichydrofilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofi- brous scaffolds. J. Control. Release. 2004; 98 (1): 47-56. doi: 10.1016/j.jconrel.2004.04.009.
  30. Martins V.C., Goissis G., Ribeiro A.C. et al. The controlled release of antibiotic by hydroxyapatite: anionic collagen composites. Artif. Organs. 1998; 22 (3): 215-21.
  31. Kuhn K.D., Vogt S. Antimicrobial implant coating in arthroplasty. Local antibiotics in arthroplasty. Stuttgart, New York: Thieme; 2007: 23-9.
  32. Balaban N., Stoodley P., Fux C.A. et al. Prevention of staphylococcal biofilm-associated infections by the quo- rum sensing inhibitor RIP. Clin. Orthop. Relat. Res. 2005; 437: 48-54.
  33. Ren D., Bedzyk L.A., Ye R.W. et al. Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol. Bioeng. 2004; 88 (5): 630-42. doi: 10.1002/bit.20259.
  34. Hammer B.K., Bassler B.L. Quorum sensing controls bio- film formation in Vibrio cholerae. Mol. Microbiol. 2003; 50 (1): 101-4.
  35. Herzberg M., Kaye I.K., Peti W., Wood T.K. YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 through autoinducer 2 transport. J. Bacteriol. 2006; 188 (2): 587-98. doi: 10.1128/JB.188.2.587-598.2006.
  36. Юрьев С.Ю. Комплекс лечения хронического урогенитального хламидиоза с применением лазеротерапии: Автореф. дис. … канд. мед. наук; Томск; 1999.
  37. Кару Т.Й. Метаболические процессы в нефотосинтезирующих клетках, индуцированные лазерным излучением: Автореф. дис. … д-ра мед. наук; М; 1989.
  38. Козлов В.И., Буйлин В.А., Самойлов Н.Г., Марков И.И. Основы лазерной физио- и рефлексотерапии. Самара-Киев: Здоровье; 1993.
  39. Wilson M., Jianni C. Killing of meticillin-resistant Staphylococcus aureus by low-power laser light. J. Med. Microbiol. 1995; 42 (1): 62-6. doi: 10.1099/00222615-42-1-62.
  40. Bazhenov L.G., Akbarov V.A. Effect of laser radiation on microorganisms: old and new aspects. In: Proc. 1st Int. Cong. Laser & Health. Cyprus, 1997; 73.
  41. Baumann A.R., Martin S.E., Feng H. Removal of Listeria monocytogenes biofilms from stainless steel by use of ultrasound and ozone. J. Food. Prot. 2009; 72 (6): 1306-9.
  42. Самохин А.Г., Федоров Е.А., Козлова Ю.Н. и др. Применение литических бактериофагов при хирургическом лечении парапротезной инфекции эндопротеза тазобедренного сустава (пилотное исследование). Современные проблемы науки и образования. 2016; 6. doi: 10.17513/ spno.25851.



Abstract - 23


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.

Copyright (c) 2017 Samokhin A.G., Kozlova Y.N., Fyodorov E.A., Pavlov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies