Diagnostic value of magnetic resonance imaging using contrast enhancement, high-field tomographs in the detection of Morton’s neuroma

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Magnetic resonance imaging (MRI) is becoming more and more widespread in our country, being one of the leading methods in diagnosing injuries and diseases of the ankle joint and foot. From year to year the number of tomographs and studies is steadily increasing, and the absence of ionising radiation, the possibility of visualising both soft tissue and bone structures makes this procedure more attractive for patients. Reproducibility of the study, the possibility of obtaining a second opinion distinguish MRI as a leading tool in the diagnosis of neuromas. Despite its relatively frequent use, the significance of MRI diagnosis in patients with suspected intertarsal neuroma using paramagnetic imaging, 3 tesla and 1.5 tesla MRI has not been fully reported.

СLINICAL CASES DESCRIPTION: The article presents a series of illustrative studies of patients with intermetatarsal neuroma: using paramagnetic imaging tools, without the use of paramagnetic imaging tools, with large slice thickness, with high-field tomography.

CONCLUSION: Despite the obvious advantages of using high-field imaging in the diagnosis of peripheral nervous system diseases, in our opinion, the informative value of this study in the routine diagnosis of Morton's neuroma does not exceed that of the currently most common 1.5 tesla MRI.

Full Text

Restricted Access

About the authors

Daria A. Bolshakova

European Clinic of Sports Traumatology and Orthopedics ECSTO; Russian University of Peoples’ Friendship

Author for correspondence.
Email: dasha.bolsh@gmail.com
ORCID iD: 0009-0003-3332-9267
SPIN-code: 9584-9980
Russian Federation, Moscow; Moscow

Andrey A. Kardanov

European Clinic of Sports Traumatology and Orthopedics ECSTO

Email: akardanov@emcmos.ru
ORCID iD: 0000-0003-2866-2295
SPIN-code: 5134-8123

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Musa N. Maysigov

European Clinic of Sports Traumatology and Orthopedics ECSTO

Email: mmaysigov@emcmos.ru
ORCID iD: 0000-0002-2096-5876

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Andrey V. Korolev

European Clinic of Sports Traumatology and Orthopedics ECSTO; Russian University of Peoples’ Friendship Moscow

Email: korolev.andrey.prof@gmail.com
ORCID iD: 0000-0002-8769-9963
SPIN-code: 6980-6109

MD, Dr. Sci. (Med.)

Moscow; Moscow

References

  1. Munir U, Tafti D, Morgan S. Morton Neuroma. Treasure Island (FL): StatPearls Publishing; 2022.
  2. Colò G, Rava A, Samaila EM, Palazzolo A, Talesa G, Schiraldi M, Magnan B, Ferracini R, Felli L. The effectiveness of shoe modifications and orthotics in the conservative treatment of Civinini-Morton syndrome: state of art. Acta Bio Medica Atenei Parmensis. 2020;91(4-S):60–68. doi: 10.23750/abm.v91i4-S.9713
  3. Zaleski M, Tondelli T, Hodel S, Rigling D, Wirth S. The interphalangeal angle as a novel radiological measurement tool for Morton’s neuroma — a matched case-control study. Journal of Foot and Ankle Research. 2021;14(1):62. doi: 10.1186/s13047-021-00502-7
  4. Saltykova VG, Ramonova DR, Makinyan LG, Zeynalov VT, Shtok AV, Mitkov VV. Ultrasound in foot lesion diagnosis (Morton’s neuroma, lipofibroma). Ultrasound & Functional Diagnostics. 2021;(1):65–88. (In Russ).
  5. Dakkak YJ, Niemantsverdriet E, van der Helm-van Mil AHM, Reijnierse M. Increased frequency of intermetatarsal and submetatarsal bursitis in early rheumatoid arthritis: a large case-controlled MRI study. Arthritis Research & Therapy. 2020;22(1):277. doi: 10.1186/s13075-020-02359-w
  6. Dinoá V, von Ranke F, Costa F, Marchiori E. Evaluation of lesser metatarsophalangeal joint plantar plate tears with contrast-enhanced and fat-suppressed MRI. Skeletal Radiology. 2016;45(5):635–644. doi: 10.1007/s00256-016-2349-z
  7. Raouf T, Rogero R, McDonald E, Fuchs D, Shakked RJ, et al. Value of Preoperative Imaging and Intraoperative Histopathology in Morton’s Neuroma. Foot & Ankle International. 2019;40(9):1032–1036. doi: 10.1177/1071100719851121
  8. Ormeci T, Guler O, Malkoc M, Kaya N. Evaluating the features of interdigital neuroma using 3-Tesla magnetic resonance imaging. European Journal of Anatomy. 2023;27(2):171–180. doi: 10.52083/OLLN3191
  9. Lee M-J, Kim S, Huh Y-M, Song H-T, Lee S-A, Lee JW, Suh J-S. Morton Neuroma: Evaluated with Ultrasonography and MR Imaging. Korean Journal of Radiology. 2007;8(2):148–155. doi: 10.3348/kjr.2007.8.2.148
  10. Williams JW, Meaney J, Whitehouse GH, Klenerman L, Hussein Z. MRI in the investigation of morton’s neuroma: Which sequences? Clinical Radiology. 1997;52(1):46–49. doi: 10.1016/s0009-9260(97)80305-4
  11. George VA, et al. Morton’s neuroma: the role of MR scanning in diagnostic assistance. The Foot. 2005;15(1):14–16.
  12. Zanetti M, Ledermann T, Zollinger H, Hodler J. Efficacy of MR imaging in patients suspected of having Morton’s neuroma. American Journal of Roentgenology. 1997;168(2):529–532. doi: 10.2214/ajr.168.2.9016241
  13. Erickson SJ, Canale PB, Carrera GF, Johnson JE, Shereff MJ, Gould JS, Hyde JS, Jesmanowicz A. Interdigital (Morton) neuroma: high-resolution MR imaging with a solenoid coil. Radiology. 1991;181(3):833–836. doi: 10.1148/radiology.181.3.1947106
  14. Terk MR, Kwong PK, Suthar M, Horvath BC, Colletti PM. Morton neuroma: evaluation with MR imaging performed with contrast enhancement and fat suppression. Radiology. 1993;189(1):239–241. doi: 10.1148/radiology.189.1.8372200
  15. Unger HR Jr, Mattoso PQ, Drusen MJ, Neumann CH. Gadopentetate-enhanced magnetic resonance imaging with fat saturation in the evaluation of Morton’s neuroma. The Journal of Foot Surgery. 1992;31(3):244–246.
  16. Gombolevsky VA, Laipan ASh, Badyul MI, Indzhiev AA, Burenchev DV, Shapiev AN, Kim SYu, Morozov SP. Features of the use of contrast agents in radiation diagnostics. Moscow; 2018. 55 р. (In Russ).
  17. Hughes P, Miranda R, Doyle AJ. MRI imaging of soft tissue tumours of the foot and ankle. Insights into Imaging. 2019;10(1):60. doi: 10.1186/s13244-019-0749-z
  18. Khalilzadeh O, Fayad LM, Ahlawat S. 3D MR Neurography. Seminars in Musculoskeletal Radiology. 2021;25(3):409–417. doi: 10.1055/s-0041-1730909
  19. Goyal A, Wadgera N, Srivastava D, Ansari MT, Dawar R. Imaging of traumatic peripheral nerve injuries. Journal of Clinical Orthopaedics and Trauma. 2021;(21):101510. doi: 10.1016/j.jcot.2021.101510
  20. Ibrahim MA, Hazhirkarzar B, Dublin AB. Gadolinium Magnetic Resonance Imaging. Treasure Island (FL): StatPearls Publishing; 2023.
  21. Iyad N, Ahmad MS, Alkhatib S, Hjouj M. Gadolinium contrast agents-challenges and opportunities of a multidisciplinary approach: Literature review. European Journal of Radiology Open. 2023;11(5):100503. doi: 10.1016/j.ejro.2023.100503

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient K., MRI image: a — hypointensive signal compared to surrounding tissues with a T1-weighted sequence, neuroma of the third interdigital space; b — hypointensive signal compared to surrounding tissues with a T2-weighted sequence, neuroma of the third interdigital space; c — area of hyperintense signal on T2-weighted sequence (bursitis), the distal direction from image b; d — mixed hypo- and hyperintense signal (shaded area — edematous nerve sheath, perineural fibrosis surrounding the hypointense signal). T1 FS mode after contrast

Download (185KB)
3. Fig. 2. Patient C., MRI imaging, resected portion of the nerve, microscopic specimen: a — MRI: hypointense signal compared to surrounding tissues with a T1-weighted sequence, right foot; neuroma of the third interdigital space; b, c — MRI: uninformative sections in the distal and proximal directions (section thickness 3.5 mm), right foot; T1-weighted sequence; d — MRI: hypointense signal compared to surrounding tissues on T1-weighted sequence, left foot; neuroma of the third interdigital space; e — area of resected material of the fourth interdigital space, left foot (photo); f — “onion skin” fibrosis (photo, microscopic specimen); g — thinning of blood vessels (photo, microscopic specimen)

Download (376KB)
4. Fig. 3. Patient G., MRI imaging: a — hypointense signal compared to surrounding tissues with a T1-weighted sequence, right foot; neuroma of the third interdigital space; b — hypointense signal compared to surrounding tissues with a T2-weighted sequence, right foot; neuroma of the third interdigital space; c — area of hyperintense signal on T2-weighted sequence (bursitis), subcutaneous fat edema, slice following image b in the proximal direction, right foot; d — hypointense signal compared to surrounding tissues on T1-weighted sequence, left foot; neuroma of the third interdigital space; e — hypointense signal compared to surrounding tissues on T2-weighted sequence, left foot; neuroma of the third interdigital space

Download (229KB)
5. Fig. 4. Patient Z., MRI imaging, resected portion of the nerve: a — hypointense signal compared to the surrounding tissues with a T2-weighted sequence (slice thickness 630 micrometers), neuroma of the third interdigital space; b — T2-weighted sequence (slice thickness 630 micrometers), image a in the distal direction: bifurcation of the common plantar digital nerve on the medial and lateral surfaces of the third and fourth fingers; c — hypointense signal compared to surrounding tissues on T2-weighted sequence (slice thickness 2 mm), neuroma of the third interdigital space; d — resected portion of the nerve

Download (196KB)

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies