Enhanced recovery after spine surgery
- 作者: Krylov S.V.1,2, Pasechnik I.N.2, Guzhev S.S.1,2, Udovenko I.A.1, Kiriukhin P.M.1
-
隶属关系:
- Priorov National Medical Research Centre for Traumatology and Orthopaedics
- Central State Medical Academy of the Administration of the President of the Russian Federation
- 期: 卷 32, 编号 2 (2025)
- 页面: 521-527
- 栏目: Reviews
- ##submission.dateSubmitted##: 02.07.2024
- ##submission.dateAccepted##: 25.07.2024
- ##submission.datePublished##: 22.07.2025
- URL: https://journals.eco-vector.com/0869-8678/article/view/634003
- DOI: https://doi.org/10.17816/vto634003
- EDN: https://elibrary.ru/NSMUTP
- ID: 634003
如何引用文章
详细
Enhanced recovery after surgery (ERAS) protocols are actively evolving in modern surgical practice. The primary goal of ERAS is to standardize perioperative care and improve rehabilitation potential. ERAS effectiveness has been demonstrated across various surgical fields. Historically, spine surgery was considered challenging for ERAS implementation. However, over the past decade, this perception has changed significantly, and ERAS protocols have become widely used in spine surgery. Initially, the use of ERAS in spine surgery was limited to lumbar spine procedures. Over time, however, ERAS began to be actively implemented in cervical spine surgery, neuro-oncology, and spine surgery in older and comorbid patients. Studies have shown that ERAS reduces length of hospital stay, treatment costs, perioperative opioid use, and complication rates. This review highlights the key features of ERAS in spine surgery.
全文:

作者简介
Sergey Krylov
Priorov National Medical Research Centre for Traumatology and Orthopaedics; Central State Medical Academy of the Administration of the President of the Russian Federation
编辑信件的主要联系方式.
Email: doc087@inbox.ru
ORCID iD: 0000-0001-7755-7163
SPIN 代码: 4067-1787
MD, Cand. Sci. (Medicine)
俄罗斯联邦, 10 Priorova st, Moscow, 127299; MoscowIgor Pasechnik
Central State Medical Academy of the Administration of the President of the Russian Federation
Email: pasigor@yandex.ru
ORCID iD: 0000-0002-8121-4160
SPIN 代码: 4433-1418
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, MoscowSergey Guzhev
Priorov National Medical Research Centre for Traumatology and Orthopaedics; Central State Medical Academy of the Administration of the President of the Russian Federation
Email: feldscher03@mail.ru
ORCID iD: 0009-0009-2515-4923
MD
俄罗斯联邦, 10 Priorova st, Moscow, 127299; MoscowIulia Udovenko
Priorov National Medical Research Centre for Traumatology and Orthopaedics
Email: yuliya_udovenko@icloud.com
ORCID iD: 0009-0001-2013-2727
MD
俄罗斯联邦, 10 Priorova st, Moscow, 127299Pavel Kiriukhin
Priorov National Medical Research Centre for Traumatology and Orthopaedics
Email: troy-kp@bk.ru
ORCID iD: 0009-0003-8923-3862
MD
俄罗斯联邦, 10 Priorova st, Moscow, 127299参考
- Kehlet H. Multimodal approach to control postoperative pathophysiology and rehabilitation. British journal of anaesthesia. 1997;78(5):606–617. doi: 10.1093/bja/78.5.606
- Achkasov SI, Gubaidullin RR, Ermakov NA, et al. Accelerated recovery program for surgical patients: Fast track. Moscow: GEOTAR-Media; 2017. 208 p. (in Russ.). EDN: TTTWUG
- Bannister M, Ah-See KW. Enhanced recovery programmes in head and neck surgery: systematic review. The Journal of Laryngology & Otology. 2015;129(5):416–420. doi: 10.1017/S0022215115000936
- Barton JG. Enhanced recovery pathways in pancreatic surgery. Surgical Clinics. 2016;96(6):1301–1312. doi: 10.1016/j.suc.2016.07.003
- Smith HJ, Leath C.A, Straughn JM. Enhanced recovery after surgery in surgical specialties: gynecologic oncology. Surgical Clinics. 2018;98(6):1275–1285. doi: 10.1016/j.suc.2018.07.013
- Saidian A, Nix JW. Enhanced recovery after surgery: urology. Surgical Clinics. 2018;98(6):1265–1274. doi: 10.1016/j.suc.2018.07.012
- Pennington Z, Cottrill E, Lubelski D, et al. Systematic review and meta-analysis of the clinical utility of Enhanced Recovery After Surgery pathways in adult spine surgery. Journal of Neurosurgery: Spine. 2020;34(2):325–347. doi: 10.3171/2020.6.SPINE20795
- Leng X, Zhang Y, Wang G, et al. An enhanced recovery after surgery pathway: LOS reduction, rapid discharge and minimal complications after anterior cervical spine surgery. BMC Musculoskeletal Disorders. 2022;23(1):252. doi: 10.1186/s12891-022-05185-0
- Gadiya AD, Koch JEJ, Patel MS, et al. Enhanced recovery after surgery (ERAS) in adolescent idiopathic scoliosis (AIS): a meta-analysis and systematic review. Spine Deformity. 2021;9(4):893–904. doi: 10.1007/s43390-021-00310-w
- Liu B, Liu S, Wang Y, et al. Enhanced recovery after intraspinal tumor surgery: a single-institutional randomized controlled study. World Neurosurgery. 2020;136:E542–e552. doi: 10.1016/j.wneu.2020.01.067
- Burgess LC, Arundel J, Wainwright TW. The effect of preoperative education on psychological, clinical and economic outcomes in elective spinal surgery: a systematic review. Healthcare. 2019;7(1):48. doi: 10.3390/healthcare7010048
- Seicean A, Seicean S, Alan N, et al. Preoperative anemia and perioperative outcomes in patients who undergo elective spine surgery. Spine (Phila Pa 1976). 2013;38(15):1331–41. doi: 10.1097/BRS.0b013e3182912c6b
- Grønkjær M, Eliasen M, Skov-Ettrup LS, et al. Preoperative smoking status and postoperative complications: a systematic review and meta-analysis. Annals of surgery. 2014;259(1):52–71. doi: 10.1097/SLA.0b013e3182911913
- Egholm JWM, Pedersen B, Møller AM, et al. Perioperative alcohol cessation intervention for postoperative complications. Cochrane Database of Systematic Reviews. 2018;11(11):CD008343. doi: 10.1002/14651858.CD008343.pub3
- Zhang L, Li Q, Quan RF, Liu JS. Is preemptive analgesia a good choice for postoperative pain relief in lumbar spine surgeries?: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2021;100(13):e25319. doi: 10.1097/MD.0000000000025319
- Han C, Kuang MJ, Ma JX, Ma XL. The efficacy of preoperative gabapentin in spinal surgery: a meta-analysis of randomized controlled trials. Pain physician. 2017;20(7):649.
- Park SY, An HS, Lee SH, et al. A prospective randomized comparative study of postoperative pain control using an epidural catheter in patients undergoing posterior lumbar interbody fusion. European Spine Journal. 2016;25(5):1601–1607. doi: 10.1007/s00586-016-4385-8
- Goel VK, Chandramohan M, Murugan C, et al. Clinical efficacy of ultrasound guided bilateral erector spinae block for single-level lumbar fusion surgery: a prospective, randomized, case-control study. The Spine Journal. 2021;21(11):1873–1880. doi: 10.1016/j.spinee.2021.06.015
- Kurz A. Thermal care in the perioperative period. Best Practice & Research Clinical Anaesthesiology. 2008;22(1):39–62. doi: 10.1016/j.bpa.2007.10.004
- Simegn GD, Bayable SD, Fetene MB. Prevention and management of perioperative hypothermia in adult elective surgical patients: A systematic review. Annals of Medicine and Surgery. 2021;72:103059. doi: 10.1016/j.amsu.2021.103059
- Debono B, Wainwright TW, Wang MY, et al. Consensus statement for perioperative care in lumbar spinal fusion: Enhanced Recovery After Surgery (ERAS®) Society recommendations. The Spine Journal. 2021;21(5):729–752. doi: 10.1016/j.spinee.2021.01.001
- Corniola MV, Debono B, Joswig H, Lemée JM, Tessitore E. Enhanced recovery after spine surgery: review of the literature. Neurosurgical Focus. 2019;46(4):E2. doi: 10.3171/2019.1.FOCUS18657
- Hammad A, Wirries A, Ardeshiri A, Nikiforov O, Geiger F. Open versus minimally invasive TLIF: literature review and meta-analysis. Journal of orthopaedic surgery and research. 2019;14(1):1–21. doi: 10.1186/s13018-019-1266-y
- Golubovsky JL, Ilyas H, Chen J, et al. Risk factors and associated complications for postoperative urinary retention after lumbar surgery for lumbar spinal stenosis. The Spine Journal. 2018;18(9):1533–1539. doi: 10.1016/j.spinee.2018.01.022
- Garg B, Mehta N, Bansal T, et al. Design and implementation of an enhanced recovery after surgery protocol in elective lumbar spine fusion by posterior approach: a retrospective, comparative study. Spine (Phila Pa 1976). 2021;46(12):E679–E687. doi: 10.1097/BRS.0000000000003869
- Kanayama M, Oha F, Togawa D, Shigenobu K, Hashimoto T. Is closed-suction drainage necessary for single-level lumbar decompression? Review of 560 cases. Clin Orthop Relat Res. 2010;468(10):2690–4. doi: 10.1007/s11999-010-1235-6
- Patel SB, Griffiths-Jones W, Jones CS, et al. The current state of the evidence for the use of drains in spinal surgery: systematic review. European Spine Journal. 2017;26(11):2729–2738. doi: 10.1007/s00586-017-4983-0
- Bajwa SJS, Haldar R. Pain management following spinal surgeries: an appraisal of the available options. Journal of Craniovertebral Junction and Spine. 2015;6(3):105–110. doi: 10.4103/0974-8237.161589
- Yang MMH, Riva-Cambrin J, Cunningham J, et al. Development and validation of a clinical prediction score for poor postoperative pain control following elective spine surgery: Presented at the 2020 AANS/CNS Joint Section on Disorders of the Spine and Peripheral Nerves. Journal of Neurosurgery: Spine. 2020;34(1):3–12. doi: 10.3171/2020.5.SPINE20347
- Walker CT, Gullotti DM, Prendergast V, et al. Implementation of a standardized multimodal postoperative analgesia protocol improves pain control, reduces opioid consumption, and shortens length of hospital stay after posterior lumbar spinal fusion. Neurosurgery. 2020;87(1):130–136. doi: 10.1093/neuros/nyz312
- Burgess LC, Wainwright TW. What is the evidence for early mobilization in elective spine surgery? A narrative review. Healthcare (Basel). 2019;7(3):92. doi: 10.3390/healthcare7030092
- Tazreean R, Nelson G, Twomey R. Early mobilization in enhanced recovery after surgery pathways: current evidence and recent advancements. Journal of comparative effectiveness research. 2021;11(2):121–129. doi: 10.2217/cer-2021-0258
补充文件
