Diagnosis of low-grade central osteosarcoma using a neural network model. Case report and literature review



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The diagnosis of low‑grade central osteosarcoma poses a significant diagnostic challenge because its radiologic and histologic features substantially overlap with various benign processes, most commonly leading to misdiagnosis as fibrous dysplasia. Convolutional neural network–based mathematical models are successfully applied for automated analysis of digitized histological images, including tumor classification, segmentation of regions of interest, and identification of morphological features of malignancy. One of the most promising directions is automated detection of mitoses — a key indicator of tumor proliferative activity with important diagnostic and prognostic value.

CLINICAL CASES DESCRIPTION: We report a clinical case of a 33-year-old female whose lesion was long and erroneously interpreted as fibrous dysplasia after a pathological fracture of the femoral diaphysis. Review of histological specimens and repeat biopsy at the N.N. Priorov National Medical Research Center for Traumatology and Orthopedics established a diagnosis of low‑grade central osteosarcoma with areas of dedifferentiation and foci of high‑grade osteosarcoma. For diagnostic support, a mathematical model based on a convolutional neural network (ResNet-101), previously developed by the authors for automated detection of pathological mitoses in digitized histological images, was used. The model analyzed scanned slides (Leica Aperio CS2, ×400) and identified several objects with high probabilities of being pathological mitoses (maximum probability scores 99% and 92%), findings that corresponded to the assessments of two experienced pathologists and corroborated the malignant nature of the lesion.

CONCLUSION: A clinicopathological and radiological description of the disease is presented. Diagnostic difficulties and similarities with fibrous dysplasia and other benign processes are discussed, as well as the potential and limitations of artificial intelligence methods in pathology for rare tumors with low mitotic activity. Emphasis is placed on the role of neural‑network analysis as an adjunct tool to improve reproducibility and sensitivity of mitosis detection, and on the need for multicenter model validation, implementation of color‑normalization methods, and result interpretability prior to clinical deployment.

About the authors

Gennadiy N Berchenko

Federal State Budgetary Institution "National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov" of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: berchenko@cito-bone.ru
ORCID iD: 0000-0002-7920-0552
SPIN-code: 3367-2493

Заведующий отделением, врачом-патологоанатом, цитолог, доктор медицинских наук, профессор

Russian Federation

Alexander K Morozov

Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия

Email: ak_morozov@mail.ru
ORCID iD: 0000-0002-9198-7917
SPIN-code: 4447-8306

Доктор медицинских наук, профессор

Russian Federation

Vadim Yu Karpenko

Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия

Email: Doctor-kv@cito-priorov.ru
ORCID iD: 0000-0002-8280-8163
SPIN-code: 1360-8298

Доктор медицинских наук

Alexander F Kolondaev

Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия

Email: klndff@inbox.ru
ORCID iD: 0000-0002-4216-8800
SPIN-code: 5388-2606

Кандидат медицинских наук

Russian Federation

Olga B Shugaeva

Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия

Email: Olga.Shugaeva2013@yandex.ru
ORCID iD: 0000-0002-0778-5109

Врач патологоанатомического отделения

Russian Federation

Nina V Fedosova

Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова, Москва, Россия

Email: hard_sign@mail.ru
ORCID iD: 0000-0002-0829-9188
SPIN-code: 5380-3194

научный сотрудник лаборатории патоморфологии тканей опорно-двигательного аппарата

Russian Federation

References

  1. Yoshida A, Bredella MA, Gambarotti M, Sumathi VP. Low-grade central osteosarcoma. Soft Tissue and Bone Tumours. In: WHO Classification of Tumours. 5th ed. 2020:400–402.
  2. Unni KK, Dahlin DC, McLeod RA, Pritchard DJ. Intraosseous well-differentiated osteosarcoma. Cancer. 1977;40(3):1337–1347. doi: 10.1002/1097-0142(197709)40:3<1337::aid-cncr2820400351>3.0.co;2-x
  3. Yamashiro M, Komori A. Osteosarcoma mimicking fibrous dysplasia of the jaw. Int J Oral MaxillofacSurg. 1987;16(1):112–115. doi: 10.1016/s0901-5027(87)80040-1
  4. Ellis JH, Siegel CL, Martel W, Weatherbee L, Dorfman H. Radiologic features of well-differentiated osteosarcoma. AJR Am J Roentgenol. 1988;151(4):739–742. doi: 10.2214/ajr.151.4.739
  5. Kurt AM, Unni KK, McLeod RA, Pritchard DJ. Low-grade intraosseous osteosarcoma. Cancer. 1990;65(6):1418–1428. doi: 10.1002/1097-0142(19900315)65:6<1418::aid-cncr2820650629>3.0.co;2-q
  6. Bertoni F, Bacchini P, Fabbri N, et al. Osteosarcoma. Low-grade intraosseous-type osteosarcoma, histologically resembling parosteal osteosarcoma, fibrous dysplasia, and desmoplastic fibroma. Cancer. 1993;71(2):338–345. doi: 10.1002/1097-0142(19930115)71:2<338::aid-cncr2820710212>3.0.co;2-h
  7. Invards CY, Knuutila S. Low grade central osteosarcoma. In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Soft Tissue and Bone. IARC Press, Lyon, France; 2002:275–276.
  8. Malhas AM, Sumathi VP, James SL, et al. Low-Grade Central Osteosarcoma: A Difficult Condition to Diagnose. Sarcoma. 2012;2012:764796 doi: 10.1155/2012/764796
  9. Albayrak A, Bilgin G. Mitosis detection using convolutional neural network based features. In: IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI). 2016:335–340. doi: 10.1109/CINTI.2016.7846429
  10. Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci. 2020;111(5):1452–1460. doi: 10.1111/cas.14377
  11. Mathew T, Ajith B., Kini J. R., Rajan J. Deep learning-based automated mitosis detection inhistopathology images for breast cancer grading. Int J Imaging Syst Technol. 2022;32(4):1192–1208. doi: 10.1002/ima.22703
  12. Veta M, van Diest PJ, Jiwa M, Al-Janabi S, Pluim JPW. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method. PLoS ONE. 2016;11(8):e0161286. doi: 10.1371/journal.pone.0161286
  13. Li C, Wang X, Liu W, Latecki LJ. Deep Mitosis: Mitosis Detection via Deep Detection, Verication and Segmentation Networks. Medical Image Analysis. 2018;45:121–133. doi: 10.1016/j.media.2017.12.002
  14. Shafi S, Parwani AV. Artificial intelligence in diagnostic pathology. Diagnostic Pathology. 2023;18:109. doi: 10.1186/s13000-023-01375-z
  15. Premisha P, Mauran К. Deep Learning-Based Mitosis Detection in Breast Cancer Histopathology Images: A Mapping Study. In: 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE). doi: 10.1109/SCSE61872.2024.10550511
  16. Dorfman HD, Czerniak B. Bone tumors. 1st ed. St. Louis, Mo: Mosby; 1998:205–213.
  17. Mahmood T, Arsalan M, Owais M, Lee MB, Park KR. Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs. J Clin Med. 2020;9(3):749. doi: 10.3390/jcm9030749
  18. Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer. 2024;23(11):192. doi: 10.1186/s12943-024-02105-9
  19. Patent RUS № 2785853 C1/ 14.12.2022. Fedosova NV, Berchenko GN, Mashoshin DV. Method for differential diagnostics of a malignant tumour and a benign process of bone tissue based on scanned images of a histological glass. Available from: https://www.elibrary.ru/item.asp?id=49994631 (In Russ.) EDN: MRJBWK
  20. Berchenko GN, Fedosova NV, Kochan MG, Mashoshin DV. NEURAL NETWORK MODEL DEVELOPMENT FOR DETECTING ATYPICAL MITOSES IN HISTOLOGICAL SLIDES. N.N. Priorov Journal of Traumatology and Orthopedics. 2024;31(3):337–349. doi: 10.17816/vto626361 EDN: EOKZEO
  21. Rosaj J. Rosaj and Ackerman’s Surgical Pathology. 9th ed. China, Elsevier; 2004:2153–2157.
  22. Choong PF, Pritchard DJ, Rock MG, et al. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clinical orthopaedics and related research. 1996;(322):198–206. doi: 10.1097/00003086-199601000-00025
  23. Andresen KJ, Sundaram M, Unni KK, Sim FH. Imaging features of low-grade central osteosarcoma of the long bones and pelvis. Skeletal radiology. 2004;33(7):373–379. doi: 10.1007/s00256-004-0796-4
  24. Menna C, Grimer RJ, Carter SR, et al. Low grade central osteosarcoma — difficult to diagnose, easy to treat! J Bone Joint Surgery. 2011;93-B(Suppl 1):81. doi: 10.1302/0301-620X.93BSUPP_I.0930081
  25. Gilg MM, Liegl B, Wibmer C, et al. Central low-grade osteosarcoma with an unusual localization in the diaphysis of a 12-year old patient. Radiol Oncol. 2013;47(2):192–196. doi: 10.2478/raon-2013-0015
  26. Vasiliadis HS, Arnaoutoglou C, Plakoutsis S, Doukas M, Batistatou A, Xenakis TA. Low-grade central osteosarcoma of distal femur, resembling fibrous dysplasia. World J Orthop. 2013;4(4):327–332. doi: 10.5312/wjo.v4.i4.327
  27. Unni KK. Dahlin’s Bone Tumors: General Aspects and Data on 11,087 Cases. 5th ed. Philadelphia, Pa: Lippincott-Raven; 1996.
  28. Murphey MD, Robbin MR, McRae GA, et al. The many faces of osteosarcoma. RadioGraphics. 1997;17(5):1205–1231. doi: 10.1148/radiographics.17.5.9308111
  29. Ostrowski ML, Johnson ME, Smith PD, et al. Low-Grade Intraosseous Osteosarcoma with Prominent Lymphoid Infiltrate. Arch Pathol Lab Med. 2000;124(6):868–871. doi: 10.5858/2000-124-0868-LGIOWP21
  30. Klein MJ, Siegal GP. Osteosarcoma. Anatomic and histologic variants. Am J Surg. Pathol. 2006;125(4):555–581. doi: 10.1309/UC6K-QHLD-9LV2-KENN
  31. Baumhoer D, Bohling TO, Cates JMM, et al. Osteosarcoma. In: WHO Classification of Tumours. 5th ed. Soft Tissue and Bone Tumours. Lyon (Franee): International Agency for Research on Cancer; 2020:403–410.
  32. Dahlin DC, Unni KK. Bone tumors. 4th ed. Springfield, IL: Charles C. Thomas; 1986:226–300.
  33. Dahlin DC, Unni KK. Osteosarcoma of bone and its important recognizable varieties. Am J Surg Pathol. 1977;1(1):61–72. doi: 10.1097/00000478-197701010-00007
  34. Kumar A, Varshney MK, Khan SA, Rastogi S, Safaya R. Low grade central osteosarcoma — a diagnostic dilemma. Joint Bone Spine. 2008;75(5):613–615. doi: 10.1016/j.jbspin.2007.09.016
  35. Dujardin F. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Modern Pathology. 2011;24(5):624–637. doi: 10.1038/modpathol.2010.229
  36. Wang X, Zhang J, Yang S, et al. A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images. Med Image Anal. 2023;84:102703. doi: 10.1016/j.media.2022.102703
  37. Khan HU, Raza B, Shah MH, et al. SMDetector: Small mitotic detector in histopathology images using faster R-CNN with dilated convolutions in backbone model. Biomedical Signal Processing and Control. 2023;81:104414. doi: 10.1016/j.bspc.2022.104414
  38. Drioua WR, Benamrane N, Sais L. Breast Cancer Histopathological Images Segmentation Using Deep Learning. Sensors (Basel). 2023;23(17):7318. doi: 10.3390/s23177318
  39. Yücel Z, Fuat A, Pembe O. Mitotic cell detection in histopathological images of neuroendocrine tumors using improved YOLOv5 by transformer mechanism. Signal, Image and Video Processing. 2023:1–8. doi: 10.1007/s11760-023-02642-8
  40. Shihabuddin AR, K SB. Multi CNN based automatic detection of mitotic nuclei in breast histopathological images. Comput Biol Med. 2023;158:106815. doi: 10.1016/j.compbiomed 2023.106815
  41. Lakshmanan B, Anand S, Vivek Raja PS, Selvakumar B. Improved DeepMitosisNet framework for detection of mitosis in histopathology images. Multimed Tools Appl. 2023;83(14):43303–24. doi: 10.1007/s11042-023-16830-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.