Results of 6-year monitoring of antibiotic resistance of leading microorganisms in fracture-related infection of long bones and chronic osteomyelitis as its consequence, in conditions of transosseous osteosynthesis

  • Authors: Tsiskarashvili A.1, Melikova R.2, Nazarenko A.G.2, Otdelionov V.A.3, Vobishevich N.K.4
  • Affiliations:
    1. Federal State Budgetary Institution "National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov" of the Ministry of Health of the Russian Federation
    2. Научный сотр. отд. последствий травм опорно-двигательной системы и костно-суставной инфекции № 5, ФГБУ НМИЦ "Травматологии и Ортопедии им. Н.Н. Приорова врач-травматолог-ортопед высшей квалификационной категории, кандидат медицинских наук
    3. клинический фармаколог, к.м.н. ФГБУ "НМИЦ Травматологии и Ортопедии им. Н.Н. Приорова
    4. Зав. лаборатории микробиологии, к.м.н. ФГБУ "НМИЦ Травматологии и Ортопедии им. Н.Н. Приорова
  • Section: Original study articles
  • Submitted: 05.06.2025
  • Accepted: 30.09.2025
  • Published: 30.09.2025
  • URL: https://journals.eco-vector.com/0869-8678/article/view/683059
  • DOI: https://doi.org/10.17816/vto683059
  • ID: 683059


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The increasing resistance of pathogenic strains of fracture-related infection (FRI) significantly limits the possibilities of effective antibiotic therapy, which creates serious problems in healthcare.

AIM: To assess the dynamics of antibiotic resistance of leading microorganisms in FRI of long bones and chronic osteomyelitis, as its consequence, treated using transosseous osteosynthesis method in 2019–2024.

MATERIALS AND METHODS: Retrospective observational one-center study. Antibiotic resistance was retrospectively studied in 247 treated patients. The data were processed using the Pearson χ² criterion.

RESULTS: More than 60% of MSSA and 70% of MSSE and Corynebacterium were resistant to fluoroquinolones. MRSE showed stable sensitivity to vancomycin, teicoplanin, and linezolid. E. faecalis remained sensitive to ampicillin (94.4%), vancomycin, linezolid and tigecycline (100%). Multidrug-resistant strains prevailed among non-fermenting Gram-negative and Klebsiella pneumoniae, and ESBL — among representatives of the Enterobacteriaceae family. In 2024, pan-resistant Gram-negative and vancomycin-resistant MRSA were discovered for the first time. Multidrug resistance was mainly found in Gram-negative bacteria. The most resistant in our study were non-fermenting microbes — Acinetobacter baumannii and Pseudomonas aeruginosa. Gram-positive microflora, especially MSSE, remains highly sensitive to the tested antibiotics.

CONCLUSION: The combination of vancomycin with meropenem remains an effective therapy due to the high sensitivity of Gram-positive to vancomycin and Enterobacteriaceae to carbapenems. However, the increasing resistance among Gram-negative pathogens will require a revision of the current regimen in the near future.

Full Text

Restricted Access

About the authors

Archil Tsiskarashvili

Federal State Budgetary Institution "National Medical Research Center of Traumatology and Orthopedics named after N.N. Priorov" of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: armed05@mail.ru

Заведующий отделением последствий травм опорно-двигательной системы и костно-суставной инфекции,  № 5,ФГБУ НМИЦ "Травматологии и Ортопедии им. Н.Н. Приорова
врач-травматолог-ортопед высшей квалификационной категории,
кандидат медицинских наук

Russian Federation

Regina Melikova

Научный сотр. отд. последствий травм опорно-двигательной системы и костно-суставной инфекции № 5, ФГБУ НМИЦ "Травматологии и Ортопедии им. Н.Н. Приорова
врач-травматолог-ортопед высшей квалификационной категории,
кандидат медицинских наук

Email: regina-melikova@mail.ru

Anton Gerasimovich Nazarenko

Email: NazarenkoAG@cito.priorov.ru

Директор ФГБУ "НМИЦ Травматологии и Ортопедии им. Н.Н. Приорова. д.м.н. профессор, Член кор. РАН.

Vitalii Aleksandrovich Otdelionov

клинический фармаколог, к.м.н. ФГБУ "НМИЦ Травматологии и Ортопедии им. Н.Н. Приорова

Email: OtdelenovVA@cito-priorov.ru

Natalia Konstantinovna Vobishevich

Зав. лаборатории микробиологии, к.м.н. ФГБУ "НМИЦ Травматологии и Ортопедии им. Н.Н. Приорова

Email: regina-melikova@mail.ru

References

  1. Hellebrekers P, Leenen LP, Hoekstra M, Hietbrink F. Effect of a standardized treatment regime for infection after osteosynthesis. J Orthop Surg Res. 2017;12(1):41. doi: 10.1186/s13018-017-0535-x
  2. Hellebrekers P, Verhofstad MHJ, Leenen LPH, et al. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur J Trauma Emerg Surg. 2020;46(6):1341–1350. doi: 10.1007/s00068-019-01182-6
  3. Garrigós C, Rosso-Fernández CM, Borreguero I, et al.; DURATIOM team. Efficacy and safety of different antimicrobial DURATions for the treatment of Infections associated with Osteosynthesis Material implanted after long bone fractures (DURATIOM): Protocol for a randomized, pragmatic trial. PLoS One. 2023 May;18(5):e0286094. doi: 10.1371/journal.pone.0286094
  4. Giordano V, Giannoudis PV. Biofilm Formation, Antibiotic Resistance, and Infection (BARI): The Triangle of Death. J Clin Med. 2024;13(19):5779. doi: 10.3390/jcm13195779
  5. Fantoni M, Taccari F, Giovannenze F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur Rev Med Pharmacol Sci. 2019;23(2 suppl):258–270. doi: 10.26355/eurrev_201904_17500
  6. Depypere M, Kuehl R, Metsemakers WJ, et al.; Fracture-Related Infection (FRI) Consensus Group. Recommendations for Systemic Antimicrobial Therapy in Fracture-Related Infection: A Consensus From an International Expert Group. J Orthop Trauma. 2020;34(1):30–41. doi: 10.1097/BOT.0000000000001626
  7. Gostev VV, Punchenko OE, Sidorenko SV. The current view on beta-lactam resistance in Staphylococcus aureus. Clinical Microbiology and Antimicrobial Chemotherapy. 2021;23(4):375–87. doi: 10.36488/cmac.2021.4.375-387 EDN: TXTCCO
  8. Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi: 10.3389/fmicb.2022.923735
  9. Tsilika M, Ntziora F, Giannitsioti E. Antimicrobial Treatment Options for Multidrug Resistant Gram-Negative Pathogens in Bone and Joint Infections. Pathogens. 2025;14(2):130. doi: 10.3390/pathogens14020130
  10. Pompilio A, Scribano D, Sarshar M, et al. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms. 2021;9(7):1353. doi: 10.3390/microorganisms9071353
  11. Unsworth A, Young B, Scarborough M, McNally M. A Comparison of Causative Pathogens in Bone and Prosthetic Joint Infections: Implications for Antimicrobial Therapy. Antibiotics (Basel). 2024;13(12):1125. doi: 10.3390/antibiotics13121125
  12. Baertl S, Walter N, Engelstaedter U, et al. What Is the Most Effective Empirical Antibiotic Treatment for Early, Delayed, and Late Fracture-Related Infections? Antibiotics (Basel). 2022 Feb 22;11(3):287. doi: 10.3390/antibiotics11030287
  13. Wu Z, Chan B, Low J, et al. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater. 2022;16:249–270. doi: 10.1016/j.bioactmat.2022.02.014
  14. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226. doi: 10.1016/S0140-6736(24)01867-1
  15. Metsemakers WJ, Morgenstern M, Senneville E, et al.; Fracture-Related Infection (FRI) group. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 2020;140(8):1013–1027. doi: 10.1007/s00402-019-03287-4
  16. Jacobs MMJ, Holla M, van Wageningen B, Hermans E, Veerman K. Mismatch Rate of Empirical Antimicrobial Treatment in Fracture-Related Infections. J Orthop Trauma. 2024;38(5):240–246. doi: 10.1097/BOT.0000000000002782
  17. Shodipo OM, Arojuraye AS, Ramat AM, et al. Is routine Gram-negative antibiotic coverage required for optimum antibiotic prophylaxis in open reduction and internal fixation of fractures? A multicenter analysis of bacteria pathogens in fracture-related infections. Musculoskelet Surg. 2025;109(3):339–344. doi: 10.1007/s12306-025-00883-z
  18. Tissingh EK, Marais L, Loro A, et al. Management of fracture-related infection in low resource settings: how applicable are the current consensus guidelines? EFORT Open Rev. 2022;7(6):422–432. doi: 10.1530/EOR-22-0031
  19. Tsiskarashvili AV, Melikova RE, Nazarenko AG. Microbiological Monitoring of Major Pathogens in Infected Long Bone Fractures Treated With External Osteosynthesis. N.N. Priorov Journal of Traumatology and Orthopedics. 2025;32(2):457−475. doi: 10.17816/vto655983 EDN: IIYFKQ
  20. Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), Smolensk State Medical University. Russian national guidelines for the determination of microorganism susceptibility to antimicrobial agents (Version 2024-02). Smolensk: IACMAC; 2024 [In Russ.]
  21. Fonkoue L, Tissingh EK, Ngouateu MT, et al. The Microbiological Profile and Antibiotic Susceptibility of Fracture Related Infections in a Low Resource Setting Differ from High Resource Settings: A Cohort Study from Cameroon. Antibiotics (Basel). 2024;13(3):236. doi: 10.3390/antibiotics13030236
  22. Pfang BG, García-Cañete J, García-Lasheras J, et al. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J Clin Med. 2019;8(2):220. doi: 10.3390/jcm8020220
  23. Andreeva IV, Stetsyuk OU, Kozlov RS. Tigecycline: prospects of application in clinical practice. Clinical microbiology and antimicrobial chemotherapy. 2010;12(2):127–145. EDN: MNJYFL
  24. Moffatt JH, Harper M, Boyce JD. Mechanisms of Polymyxin Resistance. Adv Exp Med Biol. 2019;1145:55–71. doi: 10.1007/978-3-030-16373-0_5
  25. Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–535. doi: 10.1016/j.ijantimicag.2016.11.029
  26. Depypere M, Sliepen J, Onsea J, et al. The Microbiological Etiology of Fracture-Related Infection. Front Cell Infect Microbiol. 2022;12:934485. doi: 10.3389/fcimb.2022.934485
  27. Sudduth JD, Moss JA, Spitler CA, et al. Open Fractures: Are We Still Treating the Same Types of Infections? Surg Infect (Larchmt). 2020;21(9):766–772. doi: 10.1089/sur.2019.140
  28. Ma T, Lyu J, Ma J, et al. Comparative analysis of pathogen distribution in patients with fracture-related infection and periprosthetic joint infection: a retrospective study. BMC Musculoskelet Disord. 2023;24(1):123. doi: 10.1186/s12891-023-06210-6
  29. Rupp M, Baertl S, Walter N, et al. Is There a Difference in Microbiological Epidemiology and Effective Empiric Antimicrobial Therapy Comparing Fracture-Related Infection and Periprosthetic Joint Infection? A Retrospective Comparative Study. Antibiotics (Basel). 2021;10(8):921. doi: 10.3390/antibiotics10080921
  30. Abdelmoktader А, Talal El Far А. Methods of ESBLs Detection in Clinical Microbiology Lab. Virol Immunol J. 2019;3(4):000222

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-76249 от 19.07.2019.